QUESTION BANK S5 EEE

	Module 1			
Sl. No	Questions	Marks	KU/ KTU (Month / Voor)	
1	What are the limiting factors in tapping the wind and solar potential?	5	KU May 2019	
2	With a neat sketch explain the principle of working of a High Head Hydro-electric Power Station.	5	KU May 2019	
3	With the help of a block diagram explain wind power generation	5	KU Dec 2018	
4	Enlighten upon the various components and their operation in a hydroelectric Power plant for energy production.	5	KU Dec 2018	
5	Explain Nuclear plants using a neat sketch.	5	KTUDec 2017	
6	Briefly Describe Solar power plant with Block Diagram.	5	KTU April201 6	
7	Explain Thermal power plants using a neat sketch.	5	KTUDec 2017	
8	Explain the term Load factor, Load curve and write its features.	5	KTU Dec 2017	
9	What is diversity factor? What is its significance?	5	KTU April 2016	
10	Design a capacitor bank for 5HP motor load to improve its power factor from .8 lag to unity	5	KTU April 2016	
11	Write using figures and equations how the power factor is improved using capacitors in power system.	5	KTU Dec2017	

EE301: Power Generation, Transmission and Protection

	Module 2		
1	Explain the principle and causes of proximity effect and Ferranti effect using appropriate figures	5	KTU May 2019
2	Derive the inductance of a single phase transmission line with three conductors arranged vertically in Side A and two conductors in Side B. The distance between adjacent conductors in each Side is 6m and that between the sides are 8m. Each conductor is of radius 0.3cm.	5	KTU May 2019
3	State Skin Effect and Ferranti Effect and elucidate them with necessary diagrams	5	KTU Dec 2018
4	Derive the expression for capacitance in a single phase overhead line under the influence of earth effect.	5	KTU Dec 2018
5	Classify transmission lines according to their length and enlist the line models. Derive the ABCD constants for medium lines using nominal π method.	5	KTU Dec 2018
6	A 3 phase 80km long Transmission line has its conductors of 1cm diameter spaced at the corners of the equilateral triangle of 100cm side. Find the inductance per phase of the System.	5	KTUDec 2017
7	Derive an expression for the Capacitance per phase of a 3 phase double circuit overhead Transmission line with unsymmetrical spacing (Transposed line).	5	KTU April201 6
8	A 3phase, 50 Hz, 132 kV OH Line has conductors placed in a horizontal plane4m apart. Conductor diameter is 2 cm. If the line length is 100km calculate the charging currents per phase assuming complete transposition	5	KTU April201 6
9	Evaluate the generalized circuit constants for medium transmission line using Nominal T Method. Draw the phasor diagram also.	5	KTUDec 2017

10	Derive the L-L Capacitance of a two wire line.		
11	The sending end voltage and receiving end voltage of a 3 phase line are 240 kV and 220kV line to line respectively. Its generalized constants of one phase are: $A = D = 0.99$ + j0.0132 Ω , $B = 24.75 + j165 \Omega$ and $C = -0.000044 + j0.0011 \mathcal{V}$. Draw the Receiving end power circle diagram and determine active and reactive power received when the angle between sending end and receiving end voltage phasors	5	KTUDec 2017
12	A 3phase, 50 Hz, 150 km overhead transmission line has the following distributed constants per phase: Resistance/km = 0.10, Reactance/km'= 0.50, Susceptance/km = 3x10-6 S. If the line delivers 50 MW at 110 kV and 0.8 p.f. lagging. Determine: i) Sending end current ii) Sending end voltage for this load. Use Nominal n method.	5	KTU April201 6
	Module 3		
1	What are the critical voltages in the formation of Corona? What is the effect of Corona?	5	KTU May 2019
2	 Following results are obtained by making experiments on three phase, three core metal sheathed cable: (a) Capacitance between all the three bunched conductors and sheath is 1.2 micro Farad. (b) Capacitance between any one conductor and sheath and the other two being insulated is 0.8 micro Farad. Calculate the capacitance (C) between any two conductors when the third conductor is connected to the sheath. 	5	KTU May 2019
3	A transmission line conductor at a river crossing is supported from two towers at a height of 45m and 75m above the water level. The span length is 300m. Weight of the conductor is 0.85kg/m. Determine the clearance between the conductor and water at a point	5	KTU May 2019

	midway between towers if the tension in the conductor is 2050kg		
4	Comment on the effect of wind and ice loading on	5	KTU
	transmission line with respect to change in sag	-	Dec
	calculation.		2018
5	Illustrate the methods used for improving string	5	KTU
	efficiency of overhead line insulators.		Dec
			2018
6	Derive the expressions for capacitance and insulation	5	KTU
	resistance of a single core cable.		Dec
			2018
7	Explain the advantages and disadvantages of corona.	5	KTU
			Dec
			2018
8	State the methods of improving string efficiency.	5	KTUApr
			il2018
	Module 4	1	<u> </u>
1	What is the expansion of FACTS? What are the	4	KTU
	devices used as FACTS devices? Why are they		Mav
	significant in the present scenario?		2019
2	What are the advantages and disadvantages of HVDC	4	KTU
	transmission systems?		May
			2019
3	What are the advantages of bundling of conductors?	2	KTU
			May
			2019
4	List the advantages and disadvantages of HVDC	5	KTUDec
	transmission.		2018
5	With the aid of single line diagrams, differentiate	5	KTUDec
	between mono polar and		2018
	bipolar types of HVDC links. Comment on their use in		
	the system.		
6	Discuss the various conductor materials used for	5	KTUDec
	overhead lines. What are their		2018
	relative merits and demerits?		
7	Draw the configuration of FC+TCR. Explain its	4	KTUDec
	operation.		2018
8	Explain different Configurations of HVDC systems ?	5	KTU
			April

			2018
9	Explain different types of DC links.	5	KTUDec
			2017
	Module 5		
1	What are the essential qualities required by any insulating medium used for arc quenching? What are the usual insulating media used?	5	KTU May 2019
2	Explain the significant features of a Microprocessor based relay.	5	KTU May 2019
3	With a neat sketch explain the principle of operation of an Air Blast Circuit Breaker	5	KTU May 2019
4	Explain the principle of operation of a static over current relay.	5	KTU May 2019
5	Discuss the problems associated with capacitive current chopping.	5	KTU Dec 2018
6	With a neat diagram, explain the arc extinction in VCB.	5	KTU Dec 2018
7	Derive the expression for Rate of Rise of Restriking Voltage.	5	KTU Dec 2018
8	Drive the Essential Qualities of Protective relays.	5	KU Dec 2015
9	Define the terms Restriking voltage, Recovery voltage, Zones of protection, properties of SF6 gas	5	KTU May 2017
	Module 6		
1	What makes the differential protection very significant in the protection schemes of electrical machines and transformers?	5	KTU May 2019

2		5	KTU
	What are the three main protection aspects included in		May
	the protection of		2019
	alternators? Why are they significant?		
3	What is meant by earth fault protection of an	5	KTU
	alternator? How is it implemented?		Dec
			2018
4	Explain Insulation Coordination.	5	KTUApr
			il2018
5	Explain Buchholz Relay and write its importance in		
	Transformer protection		
6	What are the important faults on alternator? Explain		
	any two stator faults and rotor faults		
	and its protection schemes?		
7	Explain distance protection scheme for protection of	5	KTUApr
	feeders?		il2018
8	Explain differential protection scheme for	5	KTUApr
	Transformers.		il2018
9	Explain operation of buchholz relay?	5	KU Dec
			2015
10	Write short note on surge diverters	5	KTUDec
			2017
11	What do you mean by insulation coordination?	5	KU Dec
			2015

QUESTION BANK

LINEAR CONTROL SYSTEMS (S5 EEE) (EE303)

Sl No.	Question	Marks		
	Module 1			
1	(i)How could you determine the Transfer Function of the system Shown in the fig?	7	KTU 2017	Dec
2	Solve C/R for the signal flow graph shown below $R(s) \stackrel{1}{\longrightarrow} \stackrel{G1}{\longrightarrow} \stackrel{G2}{\longrightarrow} \stackrel{G2}{\longrightarrow} \stackrel{G3}{\longrightarrow} \stackrel{G4}{\longrightarrow} \stackrel{G5}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{C(s)}{\longrightarrow} \stackrel{G1}{\longrightarrow} \stackrel{G2}{\longrightarrow} \stackrel{G3}{\longrightarrow} \stackrel{G4}{\longrightarrow} \stackrel{G4}{\longrightarrow} \stackrel{G5}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{C(s)}{\longrightarrow} \stackrel{G1}{\longrightarrow} \stackrel{G2}{\longrightarrow} \stackrel{G2}{\longrightarrow} \stackrel{G3}{\longrightarrow} \stackrel{G4}{\longrightarrow} \stackrel{G4}{\longrightarrow} \stackrel{G5}{\longrightarrow} \stackrel{G5}{\longrightarrow} \stackrel{G4}{\longrightarrow} \stackrel{G5}{\longrightarrow} \stackrel{G5}{\longrightarrow} \stackrel{G6}{\longrightarrow} $	10	KTU 2017	Dec
3	Consider the Mechanical system shown below and write the Differential equation. $ \begin{array}{c} $	7	KU 2015	May
4	Write the differential equations governing the mechanical system in the figure. Draw the force voltage and force current electrical analogous circuits	7	KU 2015	May

5	Give a comparison between open loop & closed loop control systems		KTU Dec 2017
6	Using block diagram reduction technique find the transfer function $C(s)/R(s)$ for the system shown in fig	10	KTU Dec 2018
7	Draw the torque-voltage electrical analogous circuit for the mechanical system shown below. $ \begin{array}{c} $	10	KU May 2015
8	State any five block diagram reduction rules with example.	5	KU 2010
9	Mention in detail about any five terminologies used in signal flow graph	5	KU 2010
10	Demonstrate the differential Equations governing the mechanical system shown in the fig. and determine the transfer function.	10	KTU Dec 2017
11	Explain with a neat block diagram explain the working of Armature controlled DC motor as a control system	6	KU May 2011
12	Estimate the overall transfer function of the system shown in the fig.	5	KTU Dec 2018

	$\xrightarrow{+} G_1 \xrightarrow{+} G_2 \xrightarrow{+} G_3 \xrightarrow{+} G_3$		
	Module II		
1	What are the various standard test signals? Draw the characteristics diagram and obtain the mathematical representation of all.	5	KU May 2011
2	The Unity feedback system is characterized by the open loop $G(S) = \frac{k}{s(s+10)}.$ transfer function Estimate the gain K, so that the system will have the damping ratio of 0.5. For this value of K, Determine the settling times, peak overshoot, and time to peak overshoot for a unit step input.	6	KTU Dec 2017
3	Consider a Second order model $1 \frac{Y(S)}{R(S)} = \frac{\omega_n^2}{s^2 + 2s\omega_n s + \omega_n^2}, 0 < \varepsilon < 1.$. Deduce the response y (t) to a unit step input	6	KU2010
5	The open loop transfer function of a unity feedback control $G(S) = \frac{k}{s(sT+1)}$ system is given by where K and T are positive constants. Demonstrate by what factor the amplifier gain should be reduced so that the peak overshoot of unit step response of the system is reduced from 75% to 25%.	7	KTU Dec 2017
6	Find the time response analysis of a first order system for step and ramp input.	5	KU 2010
7	Write the response of un damped second order system for unit step input.	7	KU 2010
8	How will you explain the meaning of for Rise time, fall time, settling time, peak overshoot with expressions?	5	KTU Dec 2017
9	A unity feedback system with unit step input for which open loop transfer function,	7	

	$G(s) = \frac{16}{s(s+s)}$ the natural Frequency, the damping ratio and the function, the natural Frequency, the damping ratio and the damped frequency of oscillation.		
10	Sketch the response of under damped second order system and mark various time domain specifications	4	KTU April2018
	MODULE III		
1	A unit ramp input is applied to a unity feedback system whose output response is $C(s) = \frac{100}{s2+5s+100}$ Analyze the time response and steady state error.	7	KU May 2009
2	For a unity feedback control system the open loop transfer Function. $G(s) = \frac{10(s+2)}{s^2(s+1)}$ Calculate Kp, Kv, Ka and the steady state error when the input is R(s) where $R(s) = \frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}.$	7	KU June 2007
3	Develop an Expression to find steady state error of closed loop system.	6	KU May 2011
4	A unity feedback system has the forward transfer function $G(s)=KS/(1+s)^2$ for the input, $r(t) = 1+5t$ formulate the minimum value of K so that the steady state error is < 0.1	6	KU May 2011
5	The open loop transfer function of a servo system with unity feedback is $10/{s(0.1s+1)}$. Determine the static error constants of the system. Calculate the steady state error of the system, when subjected to an input given by $r(t)=2+4t+{t^2/6}$ A certain unity negative feedback control system has the	5	KTU Dec 2017 KU May
~	following forward path transfer function $k(s+2)/s(s+5)(4s+1)$. The input applied is $r(t)=1+3t$. Find the minimum value of K so that the steady state error is less than 1.	-	2011

7	The open loop transfer function of a unity feedback	7		
	system is given by $20/s(s+2)$			
	.The input function is $2+3t+t^2$. Examine the generalized error			
	coefficient and steady state error.			
8	Analyze the steady state errors for unit step, unit ramp and unit	7	KU	May
	acceleration input. For a unity feedback system characterized		2011	5
	by the open loop transfer function			
	Also determine the damping			
	ratio and natural frequency of dominant errors			
9		5	KTU	April
	Write detailed notes on relative stability with its roots of Splane.		2018	- F
10	State and explain about different cases of Routh Hurwitz	6		
	criterion.			
11		5		
	Point out the concepts BIBO stability.			
12	(i)Interpret Routh array and determine the stability of the	7	KTU	Dec
	system whose characteristic equation is		2017	
	. Comment on the			
	location of the roots of Characteristic equation.			
	(ii) Summarize the rules used for construction of the Root			
	Locus of a feedback system			
1	MODULE IV	6	VU	May
1	The open loop transfer function of a unity feedback system is since by $C(a)$, $K(a(a+1)(a+2))$	0	KU 2011	May
	given by $G(s) = K/S(s+1)(s+3)$		2011	
	· Skatah tha root loove of			
	the system and the evaluate the system stability with respect			
	to their location of poles			
2	to their location of poles	1	KTU	April
2	Explain the effect of addition of poles and zeros on the nature of	-	2018	дрш
	root locus		2010	
3		5	KU	May
5	Determine the stability of the system whose overall transfer	5	2011	ivitaj
	function is given below		2011	
	$G(s) = (2s+5)/\{s(0,4s+1)(0,1s+1)\}$			
4		5	KTU	April
-	Explain the nature of time response of a second order system	-	2018	1.12111
	according to the location of roots of the characteristic equations		2010	
5		6	KU	Mav
-	A Unity feedback control system has an open loop TF		2011	1.1uj
	G(s)=K9s+1.5)/s(s+1)(s+5). Sketch the root locus			
6		10	KTU	April
-	As certain stability of the system whose characteristic equation is		2018	r
	$s^{6}+3s^{5}+5s^{4}+9s^{3}+8s^{2}6s+4=0$			

	Also find the number of roots lying on the left half, right half and imaginary axis of the s-plane			
7	Sketch the root locus for a system with	10	KTU	April
	G9s).H(s)=K/s(s+2)(s2+2s+2) Hence determine the range of K for the system stability		2018	
8	Thence determine the range of K for the system stability.	5	KTU	Dec
	What is root locus. What are the information obtained from aroot locus		2017	
	MODULE V			
1		5	KTU 2017	Dec
2	Explain gain Margin and Phase margin Evaluate the stability of the unity feedback system	10	KII	May
2	Evaluate the stability of the unity feedback system	10	2011	wiay
	20			
	S(1+3S)(1+4S)			
	using bode plot.			
3	Report the value of gain and phase cross over frequencies for	10	KTU 2017	Dec
	the following function using bode plot		2017	
	C(S) = 10			
	$G(S) = \frac{1}{S(1+0.4S)(1+0.1S)}$			
4	Develop the detailed notes on following:	10	KU	May
	(i) Frequency domain specification.		2011	
	n) Derive any two nequency domain specification parameters			
5	A unity feedback control system has	10	KTU	Dec
			2017	
	$C(c) = \frac{ks^2}{ks^2}$			
	$G(S) = \frac{1}{(1+0.2s)(1+0.02s)},$			
	, Find the Bode plot.			
-	Find K when GCOF = 5rad/sec	10	*** *	
6	Given	10	KU 2011	Мау
	$k_{\rho} = 0.2s$		2011	
	$G(s) = \frac{\pi e}{2}$			
	s(s+2)(s+8)			
	Draw the Bode plot and find K for the following two cases:			

(1	i) Gain margin equal to 6db		
(1	ii) Phase margin equal to 45° .		
7 E	Evaluate the frequency domain specification of a second order system when closed loop transfer function is given by $C(S)/R(S) = \frac{164}{s^2 + 10s + 64}$	10	KTU Dec 2017
8 E	Determine the Phase angle of the given transfer function $G(s) = \frac{10}{S(1+0.4S)(1+0.1S)}$	10	KU May 2011
N	MODULE VI		
1 C F C (i	Consider a unity feedback system having an open loop transfer Function G9s)=K/s(1+0.5s)(1+4s) Dutline the polar plot and determine the value of K so that i) Gain margin is 20db ii) phase margin is 30	10	KTU April 2018
2 F	Find the location of roots on S-plane and hence the stability of the	6	KTU 2018
3 E	Explain the procedure for Nyquist Stability Criterion.	6	
4 S	Sketch the polar plot and find the gain and phase margin of a control system has $G(s) = K/s(s+2)(s+3)$ with unity feedback.	10	KTU April 2018
5 E	Describe about nyquist contour and its various segments	5	KTU 2018
6 E Si	Express the mathematical preliminaries for nyquist stability criterion	5	KU May 2011
7 ft w	Draw Nyquist plot for the system whose open loop transfer function is G9s). $H(s) = K/s(s+2)(s+10)$.Determine the range for K which the closed loop system is stable.	10	KU May 2011
8 E	Explain the steps involved in obtaining the polar plot	5	KTU April 2018
9 v	Write short notes on Nichols Chart	5	KTU April 2018

10		5	KTU	April
			2018	
	State & explain Nyquist stability criterian			
11		5	KTU	April
	Write notes on the following (i)Non minimum phase systems (ii)		2018	_
	Transportation lag			

POWER ELECTRONICS					
	Module 1				
Sl. No	Questions	Marks	KU/ KTU (Month/ Year)		
1	"A thyristor can be triggered by an external gate pulse"- Justify using two transistor analogy of thyristor.	5	KTU APRIL 2018		
2	a) With neat sketches, explain the static V-I characteristics of an SCR. Define latching and holding current.	6	KTU APRIL		
	b) Two thyristors having a difference of 4 mA in latching current are connected in series. The voltage across the devices are 500 V and 480 V. Calculate the derating factor and thestatic equalizing resistance value for maximum string efficiency.	4	2018		
3	Compare Thyristor, Power MOSFET and IGBT on the basis of following parameters: i) Switching frequency ii) Voltage and current ratings iii) Applications (at least two)	5	KTU APRIL 2018		
4	Draw the circuit for two transistor analogy of silicon controlled rectifier and briefly describe the working.	5	KTU DEC 2017		
5	a) Derive the expression for resistance used for static voltage equalisation for a series connected string.	5	KTU DEC 2017		
	b) In a power circuit, 4 SCRs are to be connected in series in a string to handle $6kV$ and $1kA$. The voltage and current ratings of SCRs are 1800V and 1000A and have a maximum difference in their blocking currents of 10mA. Difference in recovery charge is 10μ C. Design a suitable equalizing circuit with figure.	5	KTU DEC 2017		
6	a) Explain the structure & principle of operation of IGBT.	5	KTU DEC 2017		

	b) Draw RC triggering circuit for SCR and explain with	5	KTU
	relevant wave forms.		DEC 2017
7	Define holding current and latching current of SCR. Show	5	KTU
	these currents on the static IV characteristics of SCR.		DEC
0	a) Discuss the condition which must be esticited for	5	2018 KTU
0	turning on the SCR with a gate signal	5	DFC
	b) Explain the significance of di/dt protection in thyristors	5	2018
	and describe the method employed for improving the same	-	
9	What are the steps to be employed to prevent the	4	KTU
	difficulties of parallel operation of thyristors?		DEC
			2018
	Module 2		
Sl.	Questions	Marks	KU/
No			KTU
			(Month/
1		E	Year)
1	Explain now the firing angle of an SCR can be varied by using a LUT relayation oscillator	5	
	using a CJT relaxation oscillator.		2018
2	Compare the maximum power that can be handled by fully	5	KTU
	controlled rectifier in mid- point and bridge configuration		APRIL
	if the firing angle is 30° and the reverse voltage rating		2018
2	(peak) of the thyristors is 200V.	6	
3	a) Explain a half-wave controlled rectifier feeding RL load,	6	
	Derive the expression for average output voltage		2018
	b) A single phase semi-converter fed from 120 V, 50 Hz	4	2010
	supply is connected to a (4) load resistance of 10 Ω . If the		
	average output voltage is 25% of its maximum possible		
4	average output voltage, find the circuit turn off time.	-	
4	Derive the expression for the output voltage of half wave	5	KTU DEC
			2017
5	A single phase semi converter delivers a constant load	10	KTU
	current Io . Express its source current in Fourier Series and		DEC
			2017

	derive the expressions for displacement factor and current distortion factor.		
6	With the help of circuit diagram and waveform, explain the operation of RC triggering circuit for one thyristor	5	KTU DEC 2018
7	With the help of circuit diagram explain the working of single phase fully controlled converter with RL load. Draw the waveform of output voltage with and without freewheeling diode and output current.	10	KTU DEC 2018
8	With the help of circuit diagram explain the operation of single phase semi converter with RL load. Draw the waveform of input voltage, output voltage, load current and voltage across the thyristor.	6	KTU DEC 2018
	Module 3		
Sl. No	Questions	Marks	KU/ KTU (Month/ Year)
1	What is the role of freewheeling diode in a 3 phase semi- converter?	5	KTU APRIL 2018
2	a) Draw the circuit for three phase full converter feeding RLE load. Sketch the output voltage waveform for a firing angle of 60° .	6	KTU APRIL 2018
	 b) A three-phase half-wave controlled converter is connected to 380 V (line) supply. If the load current is constant at 32 A independent of the firing angle and on state forward drop of SCRs is 1.2 V, Find: i) Peak reverse voltage rating of SCRs ii) Average power dissipation in each SCR 	4	
3	Explain the basic working of an ideal Dual converter and its four-quadrant operation.	6	KTU APRIL 2018
4	Draw the input and output voltage waveforms of $3\emptyset$ half controlled rectifier with R load for a firing angle of 30° .	5	KTU DEC 2017

RLE load and explain the working for α =60° with necessary waveforms. Derive the expression for output voltage.DEC 20176Explain how two 3 phase full converters can be connected back to back to form a circulating current type of dual converter with the help of waveforms.10KTU DEC 20177A three phase half wave converter is operated from 3- phase, 230 V, 50Hz supply with load resistance R= 10\Omega. An average output voltage is required. Determine i) the firing angle, ii) average and rms values of load current5KTU DEC 20188a) With the help of circuit diagram explain the working of three phase fully controlled converter.5KTU DEC 20189With the help of circuit diagram explain the working of single phase dual converter with circulating current mode.5KTU DEC 20189With the help of circuit diagram explain the working of single phase dual converter with circulating current mode.5KTU DEC 20189With the help of circuit diagramexplain the working of single phase dual converter with circulating current mode.5KTU DEC 20189With the help of circuit diagramexplain the working of single phase dual converter with circulating current mode.5KTU DEC 20189With the help of a current source inverters. No5KTU AFTU DEC 201810Compare voltage source and current source inverters. 10 Ω , and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.4KTU APRIL 20182	5	Draw the circuit of 3 phase fully controlled rectifier with	10	KTU
		RLE load and explain the working for $\alpha = 60^{\circ}$ with		DEC
voltage.Image: Converter set of the set		necessary waveforms. Derive the expression for output		2017
6 Explain how two 3 phase full converters can be connected back to back to form a circulating current type of dual converter with the help of waveforms. 10 KTU DEC 2017 7 A three phase half wave converter is operated from 3- phase, 230 V, 50Hz supply with load resistance R= 10Ω. An average output voltage of 50% of the maximum possible output voltage is required. Determine i) the firing angle, ii) average and rms values of load current 5 KTU DEC 2018 8 a) With the help of circuit diagram explain the working of three phase fully controlled converter. 5 KTU DEC 2018 9 With the help of circuit diagramexplain the working of single phase dual converter with circulating current mode. 5 KTU DEC 2018 9 With the help of circuit diagramexplain the working of single phase dual converter with circulating current mode. 5 KTU DEC 2018 9 With the help of circuit diagramexplain the working of single phase dual converter with circulating current mode. 5 KTU DEC 2018 1 Compare voltage source and current source inverters. 5 KTU U (Month/ Year) 1 Compare voltage source and current has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor. 4 KTU APRIL 2018 2 Explain the 120 ⁰ conduction mode of a three-phase bridge inverter with outpu		voltage.		
	6	Explain how two 3 phase full converters can be connected	10	KTU
		back to back to form a circulating current type of dual		DEC
7 A three phase half wave converter is operated from 3– phase, 230 V, 50Hz supply with load resistance R= 10Ω. An average output voltage of 50% of the maximum possible output voltage is required. Determine i) the firing angle, ii) average and rms values of load current 5 KTU DEC 2018 8 a) With the help of circuit diagram explain the working of three phase fully controlled converter. 5 KTU DEC 2018 b) Sketch the waveform of input voltage, output voltage and output current of a three phase fully controlled converter with R load operating at $\alpha = 30^{\circ}$. 5 KTU DEC 2018 9 With the help of circuit diagram explain the working of single phase dual converter with circulating current mode. 5 KTU DEC 2018 9 With the help of circuit diagram explain the working of single phase dual converter with circulating current mode. 5 KTU DEC 2018 9 With the help of circuit diagram explain the working of single phase dual converter with circulating current mode. 5 KTU Module 4 Module 4 SI. Questions 9 With the help of circuit ge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor. 4 KTU APRIL 2018 20 A single-phase half bridge inverter has a tresistive load of 10 Q, and a center-tap dc input voltage of 96 V.		converter with the help of waveforms.		2017
$ \begin{array}{c c c c c c } & \mbox{phase, 230 V, 50Hz supply with load resistance R= 10\Omega. An average output voltage of 50% of the maximum possible output voltage is required. Determine i) the firing angle, ii) average and rms values of load current a With the help of circuit diagram explain the working of three phase fully controlled converter. & \mbox{DEC} \\ & \mbox{and output current of a three phase fully controlled converter} & \mbox{supplex on the help of circuit diagram explain the working of single phase dual converter with circulating current mode. \\ \hline \\ 9 & With the help of circuit diagram explain the working of single phase dual converter with circulating current mode. \\ \hline \\ 8 & \mbox{Sl. No } \\ \hline \\ 1 & \mbox{Compare voltage source and current source inverters. \\ 1 & \mbox{Compare voltage source and current has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform factor. \\ 3 & \mbox{Explain the 120^{0}} conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state. \\ \hline \\ 10 & \mbox{Arrent explain the voltage waveforms, indicating the devices conducting in each state. \\ \hline \\ \hline \\ 10 & \mbox{Arrent explain the current source inverters} \\ \hline \\ 10 & \mbox{Arrent explain the voltage waveforms, indicating the devices conducting in each state. \\ \hline \\ \hline \\ \hline \\ 10 & \mbox{Arrent explain the 120^{0}} \\ \hline \\$	7	A three phase half wave converter is operated from 3–	5	KTU
An average output voltage of 50% of the maximum possible output voltage is required. Determine i) the firing angle, ii) average and rms values of load current20188a) With the help of circuit diagram explain the working of three phase fully controlled converter.5KTU DEC 2018b) Sketch the waveform of input voltage, output voltage and output current of a three phase fully controlled converter with R load operating at $\alpha = 30^{\circ}$.5KTU DEC 20189With the help of circuit diagram explain the working of single phase dual converter with circulating current mode.5KTU DEC 20189With the help of circuit diagram explain the working of single phase dual converter with circulating current mode.MarksKU/KT U MOdule 41Compare voltage source and current source inverters.5KTU APRIL 20182A single-phase half bridge inverter has a resistive load of 10 Ω , and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.10KTU APRIL 20183Explain the 120°conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state.10KTU APRIL 2018		phase, 230 V, 50Hz supply with load resistance $R = 10\Omega$.		DEC
$ \begin{array}{ c c c c } \hline possible output voltage is required. Determine i) the firing angle, ii) average and rms values of load current \\ \hline \\ $		An average output voltage of 50% of the maximum		2018
angle, ii) average and rms values of load currentImage: Note of the problem of the pr		possible output voltage is required. Determine i) the firing		
8 a) With the help of circuit diagram explain the working of three phase fully controlled converter. 5 KTU DEC 2018 b) Sketch the waveform of input voltage, output voltage and output current of a three phase fully controlled converter with R load operating at α = 30°. 5 KTU DEC 2018 9 With the help of circuit diagram explain the working of single phase dual converter with circulating current mode. 5 KTU DEC 2018 9 With the help of circuit diagram explain the working of single phase dual converter with circulating current mode. 5 KTU DEC 2018 Module 4 Module 4 SI. Questions 1 Compare voltage source and current source inverters. 5 KTU APRIL 2018 2 A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor. 4 KTU APRIL 2018 3 Explain the 120°conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state. 10 KTU APRIL 2018		angle, ii) average and rms values of load current		
three phase fully controlled converter.DEC 2018b) Sketch the waveform of input voltage, output voltage and output current of a three phase fully controlled converter with R load operating at $\alpha = 30^{\circ}$.5KTU DEC 20189With the help of circuit diagramexplain the working of single phase dual converter with circulating current mode.5KTU DEC 20189With the help of circuit diagramexplain the working of single phase dual converter with circulating current mode.5KTU DEC 20189QuestionsMarksKU/KT U (Month/ Year)KU/KT U1Compare voltage source and current source inverters.5KTU APRIL 20182A single-phase half bridge inverter has a resistive load of 10 Ω , and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.4KTU APRIL 20183Explain the 120°conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state.10KTU APRIL 2018	8	a) With the help of circuit diagram explain the working of	5	KTU
		three phase fully controlled converter.		DEC
b) Sketch the waveform of input voltage, output voltage and output current of a three phase fully controlled converter with R load operating at $\alpha = 30^{\circ}$. 2018 9 With the help of circuit diagramexplain the working of single phase dual converter with circulating current mode. SI. Questions No 1 Compare voltage source and current source inverters. 1 Compare voltage source and current source inverters. 2 A single-phase half bridge inverter has a resistive load of 10 Ω , and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor. 3 Explain the 120°conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state. 2018				2018
$ \begin{array}{c} and output current of a three phase fully controlled converter with R load operating at $\alpha = 30^\circ$. 2018 \\ \hline 2018 \\$		b) Sketch the waveform of input voltage, output voltage	5	KTU
		and output current of a three phase fully controlled		DEC
9 With the help of circuit diagramexplain the working of single phase dual converter with circulating current mode. 5 KTU DEC 2018 Module 4 Sl. Questions Marks KU/KT U 1 Compare voltage source and current source inverters. 5 KTU APRIL 2018 2 A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor. 4 KTU APRIL 2018 3 Explain the 120% conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state. 10 KTU APRIL 2018		converter with R load operating at $\alpha = 30^{\circ}$.		2018
single phase dual converter with circulating current mode.DEC 2018Module 4Sl. NoQuestionsMarks (Month/ Year)1Compare voltage source and current source inverters.5KTU APRIL 20182A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.4KTU APRIL 20183Explain the 120°conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state.10KTU APRIL 2018	9	With the help of circuit diagram explain the working of	5	KTU
Sl. NoQuestionsMarks UKU/KT U1Compare voltage source and current source inverters.5KTU 	-	, in the neip of encare diagramenplant the working of	-	
Module 4SI. NoQuestionsMarks UKU/KT U1Compare voltage source and current source inverters.5KTU APRIL 20181Compare voltage source and current source inverters.5KTU APRIL 20182A single-phase half bridge inverter has a resistive load of 10 Ω , and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.4KTU APRIL 20183Explain the 120°conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state.10KTU APRIL 2018		single phase dual converter with circulating current mode.		DEC
Sl. NoQuestionsMarks UKU/KT U1Compare voltage source and current source inverters.5KTU (Month/ Year)1Compare voltage source and current source inverters.5KTU APRIL 20182A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.4KTU APRIL 20183Explain the 120°conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state.10KTU APRIL 2018	,	single phase dual converter with circulating current mode.		DEC 2018
Si. NoQuestionsMarksKU/K1 UNoU(Month/ Year)1Compare voltage source and current source inverters.5KTU 		single phase dual converter with circulating current mode. Module 4		DEC 2018
Indext U U 1Compare voltage source and current source inverters.5KTU APRIL 20182A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.4KTU APRIL 		single phase dual converter with circulating current mode. Module 4	Morks	DEC 2018
1Compare voltage source and current source inverters.5KTU APRIL 20182A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.4KTU APRIL 	Sl.	single phase dual converter with circulating current mode. Module 4 Questions	Marks	DEC 2018 KU/KT
1Compare voltage source and current source inverters.5KTU APRIL 20182A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.4KTU APRIL 20183Explain the 120^{0} conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state.10KTU 	Sl. No	single phase dual converter with circulating current mode. Module 4 Questions	Marks	DEC 2018 KU/KT U (Month/
1 Compare voltage source and carrent source inverters. 5 APRIL 2018 2 A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor. 4 KTU APRIL 2018 3 Explain the 120 ⁰ conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state. 10 KTU APRIL 2018	Sl. No	single phase dual converter with circulating current mode. Module 4 Questions	Marks	DEC 2018 KU/KT U (Month/ Year)
2A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.4KTU APRIL 20183Explain the 120°conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state.10KTU APRIL 2018	SI. No	single phase dual converter with circulating current mode. Module 4 Questions Compare voltage source and current source inverters	Marks	DEC 2018 KU/KT U (Month/ Year) KTU
 2 A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor. 3 Explain the 120⁰ conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state. 	Sl. No	single phase dual converter with circulating current mode. Module 4 Questions Compare voltage source and current source inverters.	Marks 5	DEC 2018 KU/KT U (Month/ Year) KTU APR IL
10 Ω, and a center-tap dc input voltage of 96 V. Obtain APRIL 10 Ω, and a center-tap dc input voltage of 96 V. Obtain APRIL the Fourier series representation of the output voltage 2018 waveform and hence find the value of distortion factor. 10 KTU KTU inverter with output voltage waveforms, indicating the APRIL devices conducting in each state. 2018	Sl. No	single phase dual converter with circulating current mode. Module 4 Questions Compare voltage source and current source inverters.	Marks 5	DEC 2018 KU/KT U (Month/ Year) KTU APRIL 2018
the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.20183Explain the 120° conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state.10KTU APRIL 2018	SI. No	single phase dual converter with circulating current mode. Module 4 Questions Compare voltage source and current source inverters. A single-phase half bridge inverter has a resistive load of	Marks 5 4	DEC 2018 KU/KT U (Month/ Year) KTU APRIL 2018 KTU
waveform and hence find the value of distortion factor.KTU3Explain the 120° conduction mode of a three-phase bridge10inverter with output voltage waveforms, indicating the devices conducting in each state.2018	Sl. No 1	single phase dual converter with circulating current mode. Module 4 Questions Compare voltage source and current source inverters. A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain	Marks 5 4	DEC 2018 KU/KT U (Month/ Year) KTU APRIL 2018 KTU APRIL
3Explain the 120° conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the devices conducting in each state.10KTU APRIL 2018	SI. No 1	Single phase dual converter with circulating current mode. Module 4 Questions Compare voltage source and current source inverters. A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage	Marks 5 4	DEC 2018 KU/KT U (Month/ Year) KTU APRIL 2018 KTU APRIL 2018
inverter with output voltage waveforms, indicating the APRIL 2018	Sl. No 1	Single phase dual converter with circulating current mode. Module 4 Questions Compare voltage source and current source inverters. A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor.	Marks 5 4	DEC 2018 KU/KT U (Month/ Year) KTU APRIL 2018 KTU APRIL 2018
devices conducting in each state. 2018	SI. No 1 2	Single phase dual converter with circulating current mode. Module 4 Questions Compare voltage source and current source inverters. A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor. Explain the 120° conduction mode of a three-phase bridge	Marks 5 4 10	DEC 2018 KU/KT U (Month/ Year) KTU APRIL 2018 KTU APRIL 2018 KTU APRIL 2018
	SI. No 1 2 3	single phase dual converter with circulating current mode. Module 4 Questions Compare voltage source and current source inverters. A single-phase half bridge inverter has a resistive load of 10 Ω, and a center-tap dc input voltage of 96 V. Obtain the Fourier series representation of the output voltage waveform and hence find the value of distortion factor. Explain the 120 ⁰ conduction mode of a three-phase bridge inverter with output voltage waveforms, indicating the	Marks 5 4 10	DEC 2018 KU/KT U (Month/ Year) KTU APRIL 2018 KTU APRIL 2018 KTU APRIL 2018

4	What are the different classifications of inverters?	5	KTU	
			DEC	
			2017	
5	Explain the operation of 3 phase voltage source inverter	10	KTU	
	with 180° mode of operation.		DEC	
			2017	
6	With the help of circuit diagram explain the working of	5	KTU	
	current source inverter.		DEC	
			2018	
7	a) Describe the working of a three phase voltage source	4	KTU	
	inverter with an appropriate circuit diagram.		DEC	
			2018	
	b) Draw the phase and line voltagewaveform of the three	6	KTU	
	phase voltage source inverter with star connected resistive		DEC	
	load on the assumption that each IGBT conducts for 180°		2018	
8	Write Fourier series expression for the output voltage	5	KTU	
	from the single phase half bridge and full bridge inverter		DEC	
	and determine the equation for THD.		2018	
~			/	
Sl.	Questions	Marks	KU/ KTU	
Sl. No	Questions	Marks	KU/ KTU (Month/	
Sl. No	Questions	Marks	KU/ KTU (Month/ Year)	
Sl. No	Questions What is sequence control in single phase ac voltage	Marks 5	KU/ KTU (Month/ Year) KTU	
Sl. No	Questions What is sequence control in single phase ac voltage controllers? What are the advantages of employing it?	Marks 5	KU/ KTU (Month/ Year) KTU APRIL	
Sl. No	Questions What is sequence control in single phase ac voltage controllers? What are the advantages of employing it?	Marks 5	KU/ KTU (Month/ Year) KTU APRIL 2018	
Sl. No 1	Questions What is sequence control in single phase ac voltage controllers? What are the advantages of employing it? Explain sine PWM technique, with relevant waveforms.	Marks 5 5	KU/ KTU (Month/ Year) KTU APRIL 2018 KTU	
Sl. No 1	Questions What is sequence control in single phase ac voltage controllers? What are the advantages of employing it? Explain sine PWM technique, with relevant waveforms. Define modulation index and mention its significance.	Marks 5 5 5	KU/ KTU (Month/ Year) KTU APRIL 2018 KTU APRIL	
Sl. No 1	Questions What is sequence control in single phase ac voltage controllers? What are the advantages of employing it? Explain sine PWM technique, with relevant waveforms. Define modulation index and mention its significance.	Marks 5 5 5	KU/ KTU (Month/ Year) KTU APRIL 2018 KTU APRIL 2018	
Sl. No 1 2 3	Questions What is sequence control in single phase ac voltage controllers? What are the advantages of employing it? Explain sine PWM technique, with relevant waveforms. Define modulation index and mention its significance. a) Explain the operation of single phase voltage controller	Marks 5 5 6	KU/ KTU (Month/ Year) KTU APRIL 2018 KTU APRIL 2018 KTU	
Sl. No 1 2 3	Questions What is sequence control in single phase ac voltage controllers? What are the advantages of employing it? Explain sine PWM technique, with relevant waveforms. Define modulation index and mention its significance. a) Explain the operation of single phase voltage controller with RL load with output voltage and current waveforms.	Marks 5 5 6	KU/ KTU (Month/ Year) KTU APRIL 2018 KTU APRIL 2018 KTU APRIL	
Sl. No 1 2 3	QuestionsWhat is sequence control in single phase ac voltage controllers? What are the advantages of employing it?Explain sine PWM technique, with relevant waveforms. Define modulation index and mention its significance.a) Explain the operation of single phase voltage controller with RL load with output voltage and current waveforms. b) For a single-phase voltage controller, develop a	Marks 5 5 6 4	KU/ KTU (Month/ Year) KTU APRIL 2018 KTU APRIL 2018 KTU APRIL 2018	
Sl. No 1 2 3	QuestionsWhat is sequence control in single phase ac voltage controllers? What are the advantages of employing it?Explain sine PWM technique, with relevant waveforms. Define modulation index and mention its significance.a) Explain the operation of single phase voltage controller with RL load with output voltage and current waveforms. b) For a single-phase voltage controller, develop a relationship between conduction angle and firing angle.	Marks 5 5 6 4	KU/ KTU (Month/ Year) KTU APRIL 2018 KTU APRIL 2018 KTU APRIL 2018	
Sl. No 1 2 3	Questions What is sequence control in single phase ac voltage controllers? What are the advantages of employing it? Explain sine PWM technique, with relevant waveforms. Define modulation index and mention its significance. a) Explain the operation of single phase voltage controller with RL load with output voltage and current waveforms. b) For a single-phase voltage controller, develop a relationship between conduction angle and firing angle. Under what condition conduction angle equals π?	Marks 5 5 6 4	KU/ KTU (Month/ Year) KTU APRIL 2018 KTU APRIL 2018 KTU APRIL 2018	
Sl. No 1 2 3	QuestionsWhat is sequence control in single phase ac voltage controllers? What are the advantages of employing it?Explain sine PWM technique, with relevant waveforms. Define modulation index and mention its significance.a) Explain the operation of single phase voltage controller with RL load with output voltage and current waveforms. b) For a single-phase voltage controller, develop a relationship between conduction angle and firing angle. Under what condition conduction angle equals π?Explain the terms modulation index and frequency	Marks 5 5 6 4 5	KU/ KTU (Month/ Year) KTU APRIL 2018 KTU APRIL 2018 KTU APRIL 2018 KTU	
Sl. No 1 2 3	QuestionsWhat is sequence control in single phase ac voltage controllers? What are the advantages of employing it?Explain sine PWM technique, with relevant waveforms. Define modulation index and mention its significance.a) Explain the operation of single phase voltage controller with RL load with output voltage and current waveforms. b) For a single-phase voltage controller, develop a relationship between conduction angle and firing angle. Under what condition conduction angle equals π ?Explain the terms modulation index and frequency modulation ratio related to pulse width modulation.	Marks 5 5 6 4 5	KU/ KTU (Month/ Year) KTU APRIL 2018 KTU APRIL 2018 KTU APRIL 2018 KTU APRIL 2018	

5	What are the control strategies for the regulation of output voltage in ac voltagecontrollers?	5	KTU DEC 2017
6	For a single phase voltage controller feeding a resistive load, describe the working with reference to source voltage, source current, output voltage and output current.	10	KTU DEC 2017
7	What is pulse width modulation? List the various PWM techniques.	5	KTU DEC 2018
8	Explain the principle of phase control in a single phase ac voltage controller	5	KTU DEC 2018
9	a) Explain with suitable diagram, the principle of voltage control with single pulse width modulation.	5	KTU DEC
	b) With the help of circuit diagram explain the working of single phase ac voltage controller with R load.	5	2018
10	Describe how multiple pulse modulated wave can be generated from carrier and reference wave.	5	KTU DEC 2018
			2010
	Module 6		2010
Sl. No	Module 6 Questions	Marks	KU/KT U
Sl. No	Module 6 Questions	Marks	KU/KT U (Month/ Year)
Sl. No	Module 6 Questions A type A chopper has input voltage of 200 V. The current through a load of R=10Ω in series with L=80 mH, varies between 12 A and 16 A. Find the form factor of the output voltage waveform.	Marks	KU/KT U (Month/ Year) KTU APRIL 2018
Sl. No 1	Module 6QuestionsA type A chopper has input voltage of 200 V. The current through a load of R=10 Ω in series with L=80 mH, varies between 12 A and 16 A. Find the form factor of the output voltage waveform.Design a dc-dc converter with 12 V input and 200 V output at up to 50W. The ripple in the output voltage and input current should not exceed ±5% and ±20% respectively. Choose an appropriate switching device and frequency.	Marks 5 5	KU/KT U (Month/ Year) KTU APRIL 2018 KTU APRIL 2018
Sl. No 1 2 3	Module 6 Questions A type A chopper has input voltage of 200 V. The current through a load of R=10Ω in series with L=80 mH, varies between 12 A and 16 A. Find the form factor of the output voltage waveform. Design a dc-dc converter with 12 V input and 200 V output at up to 50W. The ripple in the output voltage and input current should not exceed ±5% and ±20% respectively. Choose an appropriate switching device and frequency. a) Design a simple light dimmer circuit using TRIAC including the trigger circuit.	Marks 5 5 4	KU/KT U (Month/ Year) KTU APRIL 2018 KTU APRIL 2018 KTU APRIL

4	a) Derive the expression for output voltage of a Buck- Boost regulator, showing relevant waveforms	6	KTU APRIL
	b) The switches in the figure are operated alternatively, each switch being on for half of each cycle. Determine the relationship between Vin and Vout	4	2018
5	Explain time ratio control method to vary the output voltage in choppers.	5	KTU DEC 2017
6	Derive an expression for average output voltage in terms of input dc voltage and duty cycle for a step up chopper.	5	KTU DEC 2017
7	Describe the working of four quadrant chopper with relevant circuit diagrams and its operation in all the four quadrants.	10	KTU DEC 2017
8	Explain with circuit diagram and waveforms, the working of Buck regulator for continuous current mode. Obtain expressions for inductance and capacitance.	10	KTU DEC 2017
9	Draw the circuit of step up chopper and explain its working.	5	KTU DEC 2018
10	For a type A chopper, dc source voltage is 230 V, load resistance 10 Ω , drop across the switch is 2Vand duty cycle 0.4. Calculate average and RMS value of output voltage and chopper efficiency.	5	KTU DEC 2018
11	a) A step up chopper has input voltage of 120V and output voltage of 360 V. If the conducting time of the thyristor chopper is 100 μ s, Compute the pulse width of output voltage	5	KTU DEC 2018
	b) With the help of circuit diagram and waveform explain the operation of buck converter and derive the equation of output voltage.	5	

12	Explain the design procedure of filter circuit for a boost	5	KTU
	converter with continuous current mode		DEC
			2018

EE307 : Signals & Systems

MODULE I

SI.	Questions	Marks	KTU/
No			KU
			(Month
			/Year)
1	Check the Linearity and time in variance of the system $y(t)=t^2$	5	KTU
	x(t), where $x(t) & y(t)$ are the inputs		APRIL
	and outputs respectively.		2018
2	Define unit step function and plot $x(t)$ and $x(2t)$, if	5	KU Dec
	x(t) = u(t+2)-u(t-2)		2015
3	Check whether the given signal x(t) is energy or	4	KU Dec
	power signal. Find the energy & power of the signal $x(t)=e^{-5t} *$		2017
	u(t)		
4	The impulse response of a LTI system is $h(t) = (2+e^{-3t}) u(t)$. Check	6	KTU
	whether the system is (i)Stable (ii)		Dec
	Causal (iii) Memory or memory less		2017
5	Find the response of a LTI system with the impulse	4	KTU
	response $h(t) = e^{-2t} * u(t)$ for an input $x(t)=t u(t)$		Dec
			2017
6	Distinguish between Energy & Power signals. Give	4	KTU
	an example for each category		Dec
			2016
7	Evaluate the fundamental period of the signal $x(t) = 2$	4	KU
	Sin(2t+1) + 3 Sin(4t-1)		APRIL2
			018
8	Check whether the system $y(t) = x(t).x(t-1)$ is (I)	6	KTU
	Linear (ii) Causal (iii) Time variant		Dec
			2017
9	Plot the signal $x(t) = u(t+1) + 2.u(t) - u(t-3) - 2u(t-5)$	4	KU Dec
10		~	2017
10	Given $x1(n) = \{1,1,1\}$ and $x2(n) = \{1,2\}$. Find the	5	
	convolution of the sequences graphically		
	MODULE II		
1	What is the output sequence of a LTI system with impulse	5	KTU
	response $h(n) = \{3,2\}$ to the input $x(n)$		APRIL2
	={1,2,3,3}		018

2	Check the causality and stability of the systems whose impulse	4	KTU
	responses are given (i)h(t)=e^at u(t)		Dec
	(ii) $h(n)=2^n u(-n)$ (a<0)		2017
3	For the following system described by differential	10	KTU
	equation, find the impulse response, if the system is (i) Stable (ii))	Dec
	Causal		2017
	d2 y(t)/dt2 + 5* d y(t)/dt + 6 y(t) = d2 x(t)/dt2 + 8 dx(t)/dt + 13 x(t)	1	
	Assume initial conditions as zero.		
1	Derive the condition for stability of a discrete time	4	VTI I
4	I TL system in terms of its impulse response	1	ADDII 2
	L'i system in terms of its impulse response.		$\frac{AI}{018}$
5	Find the output of an LTI system whose impulse	8	KTU
5	response is $h(t)$ to the input $x(t) h(t) = u(t) - u(t-1)$	C	Dec
	$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right)^2 = \frac{1}{2$		2017
6	For an LTI system, unit impulse response is given by $h(t)=e^{t}$	6	KTU
	a>0. Obtain step response of the		Dec
	system.		2017
	Obtain the differential equation representation of the	4	KTU
7	circuit.		APRIL2
			018
8	Using Laplace transform ,solve the differential equation obtained	6	KTU
	for the above and get voltage		Dec
	across the capacitor.		2017
9	Find $x(t)$ * $h(t)$ where $x(t) = u(t)-u(t-2)$, $h(t) = e^{-2t} u(t)$	5	KTU
	and * represents the convolution operator.		Dec
			2017
	MODULE III		
1	Obtain the exponential Fourier series of the signal	5	KTU
	$\mathbf{x}(t) = \{1, 1, 1, 1, 2, 2, 2, 2, 2\}$	-	APRIL2
			018
2	Find the Fourier transform of e^-a t	5	KTU
			APRIL2
			018
3	Sketch the magnitude & phase spectrum of the	4	KTU
	signals (I) $x(t)=A e^{a} t $ (a>0)		APRIL2
		<u> </u>	018
4	What you mean by aliasing.	4	KTU

			July201
			7
5	Find the Fourier transform of sgn(t).Plot its	4	KTU
	magnitude & Phase response		July201
			7
6	Show that $x(t)=2Hx(-w)$.	5	KTU
			July201
			7
7	Using matrix method find the convolution of $x(n)$	5	KTU
	$=\{1,4,3,1\}$ and $h(n) = \{1,2,3,2\}$		Dec
		_	2017
8	Give any five properties of nonlinear systems.	5	KTU
			APRIL20
0		~	18
9	Using matrix method find the convolution of $x[n] = \{1, 4, 3, 1\}$ and	5	KTU
	$y[n] = \{1, 2, 3, 2\}$		Dec
			2017
	MODULE IV		I
1	State and prove sampling theorem	10	KTU
			APRIL
			2018
2	The impulse response of a system is given by $h(n)=\{2,3,1\}$. Find	6	KTU
	the response of the system when it		APRIL
	is excited by the input $x(n) = u(n-1)-u(n-5)$		2018
3	Explain energy spectral density & power spectral	4	KTU
	density		APRIL
			2018
4	Determine the Fourier series representation of the following discrete	10	KU April
	time signal and sketch the frequency spectrum $x(n) = \{\dots, 1, 2, -1, 1, 2, -$		2016
_		1.0	
5	a) Find $x(t) * h(t)$ where, $x(t) = u(t) - u(t - 2)$, $h(t) = e^{iiii}u(t)$ and	10	KTU
	* represents the convolution operator.		April
	b) How will you determine the stability of a system from its transfer		2018
6	function? a) The impulse mean and of a system is given by $h(n) = $. Find the	5	VTU
U	a) The impulse response of a system is given by $n(n) = -Find$ the response of (6) the system when it is excited by the input $y(n) = y(n)$	J	
	1 1 1 1 1 1 1 1 1 1		2017
	-1) - u(11 - 3).		2017
1			

7	Obtain Discrete Fourier transform of the following signals: $i x \{n\} = 0.5u[n]$ ii) $x[n] = 0.5/n$	10	KTU July 2017
8	Determine the stability of the following discrete transfer function:	10	KTU
	H(z) = z24 + 0.7Z + 0.1 $H(z) = z24 + 2.5z + 1$		Dec
			2017

	MODULE V		
1	State & prove following properties of Z transform: (I) Multiplication by n (ii) Accumulation (iii) Convolution	6	KTU APRIL2018
2	Find inverse Z Transform of $X(Z) = z/\{2z^2 - 3z + 1\}$ z < 1/2	4	KTU APRIL2018
3	An LTI system is described by the difference equation $y(n)$ - 9/4 $y(n-1)$ +1/2 $y(n-2)$ = $x(n)$ -3 $x(n-1)$ Determine $h(n)$ for the following condition (I) The system is stable (ii)Causal	10	KTU Dec2017
4	Find the Z transform and ROC of $x(n) = (1/3)^n u(n)$	5	KTU Dec2017
5	Find the inverse Z transform of $X(z) = 3Z^{-1}/(1-z^{-1})(1-2z^{-1})$	5	KTU Dec2017
6	Write down the properties of ROC for Z transform	6	KTU July 2017
7	Find the Z transform of the sequence $x(n) = \{1, 2, 3, -1, 5, 6\}$	5	KTU July 2017
8	Verify the time shifting property of Z transform and hence find the Z transform of $x(n)=a^n+1$ u(n+1)	4	KTU July 2017
	MODULE VI		
1	State the properties of DFT (no proof required)	6	KTU APRIL2018
2	Obtain the DFT of the following signals: (i) $x[n]=(0.5)6n u(n)$ (ii) $x[n] = 0.5^{ n }$	4	KTU APRIL2018
3	Determine the stability of the following discrete transfer function (I) $H(z)=z/z^2+0.7z+0.1$	5	KTU APRIL2018
4	Give any five properties of non linear systems	5	KTU APRIL2018
5	Determine the Fourier series representation of the following signal and sketch the frequency spectrum $x(n)=\{\dots,1,2,-1,1,2,-1,\dots\}$	10	KTU Dec 2017
6	The input to the sytem is $x(n) = \{1,2,0,2\}$ h(n)= $\{5,a,3\}$ and output $y(n) = \{5,12,7,16,4,6\}$ Using fourier transform find the value of "a'	4	KTU Dec 2017
7	For any periodic sequence find the Fourier coefficients and sketch the magnitude spectrum	7	KTU Dec 2017
8	y(n) = y(n-1) + 5 y(n-2) + x(n) - 3x(n-1) Specify the ROC of H(z), and determine h(n) for the following	10	KTU April 2018

conditions i) The system ts stable ii) The system is causal	
---	--

EE 309 Microprocessor and Embedded Systems

MODULE I

Sl. No	Questions	Marks	KU/ KTU
			Month/
			Year
1.	Explain the different addressing modes of 8085.	6	KTU DEC
			2017
2.	Explain the 8085 internal architecture with the help	10	KTU DEC
	of a block diagram		2017
3.	Explain the flags in 8085.	4	KU 2016
4.	Explain the architecture and functions of stack	10	KU 2016
	pointer and program counter.		
5.	Explain demultiplexing of data/address bus.	5	KTU DEC
			2017
6.	An array contains 10 elements. Find sum of even	10	KU 2016
	numbers. Assume 16 bit answer, store it in two		
	consecutive memory locations.		
7.	Write a program to find the smallest number	10	KU 2017
	among 100 numbers stored in consecutive memory		
	locations.		
8.	Write a program to find sum of 10 8 bit numbers	10	KU 2017
	stored in consecutive memory locations.		
9.	Write a program to rearrange 10 numbers in	6	(KTU
	ascending order.		APRIL
			2018)
10.	Explain binary and BCD arithmetic in detail	10	

MODULE II

1.	Explain CALL and RETURN instructions with an	10	KTU
	example.		2017)
2.	Write a delay subroutine program for 0.4 ms,	5	
	assuming clock frequency of 3 MHz.		
3.	Explain the timing diagram of LDAX D instruction.	10	KTU 2017

4.	Explain the terms machine cycle and T states.	4	KTU 2017
5.	Differentiate between instruction cycle, machine	4	KU 2016
	cycle and T states.		
6.	Explain the timing diagram of IN data8 instruction.	10	KU 2017
7.	Explain the timing diagram of LDA 6200 H	8	KU 2016
	instruction.		
8.	Explain the PUSH and POP instructions. How is	8	KTU
	data transferred with the stack?		APRIL
			2018
9.	How the interrupts of 8085 can be classified?	5	KTU-
			APRIL
			2018
10	Compare microprocessor and microcontroller.	5	KTU/
			APRIL
			2018
11	Explain the PUSH and POP instructions of 8085	5	KTU -
	with example.		APRIL
			2018

MODULE III

1.	Explain maskable and non-maskable interrupts	5	KTU 2017
	along with interrupt related instructions.		
2.	Explain the interrupt structure and RIM instruction.	12	(KU 2016
3.	Explain maskable and non-maskable interrupts	10	KTU
	along with interrupt related instructions.		2017)
4.	Explain the control word format for I/O mode of	4	KTU
	8255.		APRIL
			2017)
5.	With the help of a block diagram explain the	10	
	operation of the 8255		
6.	Explain how the interrupts can be classified in 8051.	10	KTU
			APRIL
			2017
7.	Suggest a suitable peripheral interface to input the	10	

	status of 4 switches (ON/OFF) connected to 8085 microprocessor and indicate their status by 4 LEDs connected to 8085. Illustrate the above with schematic		
8.	Design memory systems to interface 2K ROM and	8	KTU DEC
	2K RAM using 2K*8 memory chips.		2017
9.	Explain PSW of 8051.	5	KTU
			APRIL
			2018
10	Discuss about various Bit handling instructions of	5	KTU
	8051.		APRIL
			2018

MODULE IV

1.	Explain hard and soft real time systems	8	
2.	Explain waterfall model and its advantages.	10	KTU
			APRIL
			2018
3.	Explain the application domain of embedded	8	
	systems.		
4.	Explain the features and characteristics of embedded	8	
	systems.		
5.	Describe the embedded system development model.	4	KTU
			DEC 2017
6.	Give current trends and challenges in Embedded	4	KTU
	systems.		DEC
			2017)
7.	Explain assembler, compiler, linker and loader.	4	KTU
			DEC 2017
8.	Explain the difference between microcontroller and	4	KTU
	microprocessor.		DEC 2017
9.	What are the uses of software tools for the	4	KTU
	development of an embedded system.		APRIL
			2018
10	Explain the internal Architecture of 8086	10	

MODULE V

1.	Explain instruction set of 8086 in detail.	10	KU-2013
2.	Write an assembly language program in 8086	10	KU-2013
	microprocessor to find sum of digit of an 8 bit		
	number using 8 bit operation.		
3.	Write 8086 program to subtract any two 16-bit	10	
	numbers with/without borrow		
4.	Write an assembly language program in 8086	10	
	microprocessor to find multiplication of two 8 bit		
	numbers		
5.	Write an assembly language program in 8086	10	
	microprocessor to sort 8 bit numbers in assenting		
	order		
6.	Write an assembly language program in 8086	10	
	microprocessor to convert BCD to Binary form		
7.	Write an assembly language program in 8086	10	
	microprocessor to subtract 28 bit numbers,		
8.	Assembler and assembler directives in 8086	10	KU-2014
	microprocessor.		
9.	Explain Instruction set of 8086 in detail.	10	
10	Explain about the Divide-by-Zero and Break point	6	
	interrupt of 8086		
11	Write the 8086 instruction syntax for the following.	5	KU-2014
	I. Instruction to load the effective address II.		
	Instruction to load Extra segment III. Instruction to		
	multiply the signed data IV. Instruction for ASCII		
	addition V. Instruction to convert Word to Double		
	word.		
12	Write the delay program of 1ms using 8086	6	
	processor.		

MODULE VI

1.	Explain the addressing modes of 8051.	10	KTU DEC
			2017
2.	Explain about the register banks in 8051	10	

3.	Explain the different types of 8051 instructions	10	
4.	Explain the SFRs of 8051.	4	KTU DEC
			2017
5.	Explain PSW of 8051.	4	KTU APRIL
			2017
6.	Explain the bit handling instructions in 8051.	4	KTU APRIL
			2017
7.	Explain the addressing modes of 8051.	10	KTU DEC
			2017
8.	Explain about the register banks in 8051.	10	
9.	Explain the different types of 8051 instructions.	10	
10	Explain the addressing modes of 8051.	10	KTU DEC
			2017

EE367 NEW AND RENEWABLE ENERGY SYSTEMS

	Module 1		
Sl No.	Questions	Marks	KU/ KTU (Month/ Vear)
1	What is the necessity of energy storage?	5	KTUDec 2018
2	Explain mechanical and chemical methods of energy storage.	6	KTUDec 2018
3	Discuss the current world and Indian energy scenario	5	KTUDec 2018
4	What is the present status of various modes of renewable power generations in India? Explain	5	KTUDec20 17
5	List the merits and de-merits of non-conventional energy resources	4	KTUDec20 17
6	Explain how current scenario of world energy consumption leads to the exploitation of renewable energy sources?	5	KTUApril2 018
7	Compare conventional and non-conventional sources of energy	4	KTUDec20 18
8	Explain various energy storage systems. Give its advantages and disadvantages of each.	6	KTUDec20 17
9	Explain the necessity of energy storage in renewable power harnessing? Give the diagram and explain the operation of a pumped energy storage system.	5	KTU April2018
10	Elaborate the availability and limitations of conventional sources of energy and its impact on human life. What are the alternate solutions?	5	KTU April2018
11	Explain the non-conventional energy resources available in Indian energy scenario.	5	KTU April2018

	Module 2				
Sl No.	Questions	Marks	KU/ KTU (Month/ Veen)		
1	Define and explain the following angles as related to solar geometry: (i) Surface azimuth angle (ii) Declination angle (iii) Latitude angle	5	KTUDec2 017		
2	Explain the principle and working of the following solar radiation measuring (instruments: (i) Pyranometer (ii) Pyrheliometer and (iii) Sunshine recorder. What is solar constant? Explain.	10	KTUDec2 017		
3	Distinguish between concentrating and non-concentrating type solar collectors and also draw the schematic diagram of a flat plate collector. Explain its working.	5	KTUApril 2018		
4	With the aid of a neat diagram, explain the working of a central tower collector type solar thermal electric plant.	5	KTUApril 2018		
5	Explain the principle, working and components of a solar flat plate collector. What is solar constant? Explain.	7	KTUDec2 017		
6	Define the terms solar constant, solar altitude angle and solar azimuth angle?	5	KTUApril 2018		
7	Describe construction and working of a Pyranometer. What are the factors which affect the performance of a solar thermal collector	9	KTUDec2 018		
8	Define i) declination angle ii) inclination angle iii) tilt angle iv) angle of incidence and v) zenith angle	5	KTUDec2 018		
9	Find the hour angle at the sunrise and the sunset on March 22 for a surface inclined at an angle of 200 facing south at New Delhi (280 35' N, 770 12' E).	6	KTUDec2 017		
10	Differentiate between flat plate collectors and solar concentrators and compare their performance based on concentration ratio, collector efficiency and temperature range.	6	KTUDec2 018		
11	Explain the principle of conversion of solar radiation into heat	5			

12	Explain the design, fabrication and performance of	5	
	cylindrical parabolic collector.		

	Module 3				
Sl No.	Questions	Marks	KU/ KTU		
			(Month/		
			Year)		
1	Draw the V-I characteristics of a solar cell and list out the	5	KTUDec2		
	factors affecting the electricity produced by a solar cell?		017		
2	Compare different f51pes of solar cells with reference to	5	KTUDec2		
	their construction and (5)		017		
	efficiency.				
3	For a solar PV installation it is necessary to measure the	5	KTUDec2		
	global solar irradiance of the site. Suggest a suitable solar		017		
	measuring instrument and explain its				
	Working	10	TTETT A 11		
4	With the help of a schematic diagram describe the	10	KTUApril		
_	operation of a solar photovoltaic power plant	_	2018		
5	A certain PV cell is illuminated with an irradiance of	5	KIUDec2		
	1000 wm. If the cell is100 mm X 100 mm in size and		017		
	produces 5 A at 0.5 v at the maximum power point. What				
	noint tracking?				
6	Classify solar cell based on the type of material used	10	KTUDec2		
0	Explain each one Draw and explain the block diagram of	10	017		
	a standalone solar PV power system.		017		
7	A small household-lighting system is powered from a	10			
	nominally 8 V (i.e. four cells at 2 V) storage battery				
	having a 30 Ah supply when charged. The lighting is used				
	for 4.0 h each night at 3.0 A. Design a suitable				
	photovoltaic power system that will charge the battery				
	from an arrangement of Si solar cells				
8	Explain stand-alone and grid connected solar PV	10	KTUApril		
	systems? Explain each type with the help of block		2018		
	diagram and bring out their relative merits.				
9	Draw the V-I characteristics of a solar cell and list out the	10	KTUApril		
	factors affecting the electricity produced by a solar cell?		2018		

	Compare different types of solar cells with reference to		
	their construction and efficiency.		
10	For a solar PV installation it is necessary to measure the	5	KTUApril
	global solar irradiance of the site. Suggest a suitable solar		2018
	measuring instrument and explain its working.		
11	Draw and Explain the equivalent circuit of a practical	9	KTUDec2
	solar cell. Discuss the effect of temperature and insolation		018
	on the characteristics of solar cell		
12	Draw the block diagram of a solar thermal electric plant	6	KTUDec2
	and explain its working.		018

	Module 4				
Sl No.	Questions	Marks	KU/KTU		
			(Month/		
			Year)		
1	List out any five merits and demerits of OTEC. Explain	10	KTUDec2		
	various types of tidal power plants.		017		
2	Discuss the basic principle of OTEC. Describe a closed	10	KTUDec2		
	cycle OTEC with its advantages and disadvantages.		017		
3	Explain the principle of operation of a tidal power plant.	10	KTUApr		
	How it is classified? Draw the layout of a double basin		2018		
	tidal power plant and label all the components. Explain				
	the function of each component.				
4	With the help of a schematic diagram describe the				
	operation of a Open cycle OTEC System				
5	State the merits and limitation of ocean energy	10	KTUDec2		
	conversion plant. Drawing a schematic diagram, explain		017		
	the principle of a closed cycle OTEC Plant. Why closed				
	cycle OTEC 1s preferred?	-			
6	Explain the principle of tidal power generation. List the	9	KTUDec		
_	advantages and limitations of tidal power plant	_	2018		
7	Compare the working of an open cycle, closed cycle and	6	KTUDec		
	hybrid cycle OTEC plants with neat sketches	1.0	2018		
8	What are the site selection criteria for OTEC? Draw the	10	KTUApr		
	block diagram and explain the working of Anderson		2018		
	cycle based OTEC system. Explain how bio fouling				

	affects efficiency minimized?	y of energ	gy con	version and h	now ca	n it be		
9	Differentiate b generation in tid	between al plants	ebb	generation	and	flood	5	KTUDec 2018

	Module 5		
Sl No.	Questions	Mar	KU/KTU
		ks	(Month/
			Year)
1	Discuss the factors affecting the wind speed at an area.	10	KTUDec
	List the advantages and disadvantages of wind energy conversion system		2018
2	Draw the block diagram of a wind energy conversion system and explain the parts and their functions	6	KTUDec 2018
3	Derive the expression for power extracted from wind.	4	KTUDec 2018
4	Derive the expression forpower in the wind. Define the	10	KTUApril
	term capacity factor of wind power plant. Explain the lift		2018
	and drag forces in wind and its importance in wind power generation		
5	Give the site selection criteria for wind plants and write a	5	KTUApril
	note on wind energy potential in India.		2018
6	Draw the block diagram of a typical wind energy	10	KTUApril
	conversion system and explain the working of wind		2018
	power plant. Explain how wind power plants are		
	classified. Explain vertical axis wind turbine with		
-	necessary diagrams	10	
1	Discuss the different types of wind turbine rotors used to	10	KTUDec
	extract wind. Explain the terms solidity, pitch angle, tip		2017
0	speed ratio, cut-in speed and cut speed of wind turbine		
δ	A multi-blade wind mill lifts 1.03m ³ /h of water through a	5	
	nead of 28m when the wind speed is 3.5m/s. calculate the	5	
	power coefficient if the rotor diameter is 4.5m, given that transmission efficiency -0.05 and given efficiency 0.7		
0	transmission efficiency =0.95 and pump efficiency = 0.7	10	
9	Frove that the maximum wind turbine output can be achieved when $Vd=1/2$ Vy where Vd and Vy are down	10	ATUDEC
	a conteved when $v u = 1/3$ vu where vu and vu are down-		2017

	stream and up-steam wind velocity respectively. What is pitch control of wind turbine? Explain.		
10	Determine the power output of a wind turbine whose blades are 12 m in diameter and when the wind speed is 6 m/s, the air density is about 1.2 kg/m^3 and the maximum power coefficient of the wind turbine is 0.35.	5	KTUDec 2017

	Module 6				
Sl No.	Questions	Marks	KU/KTU (Month/ Year)		
1	With a neat diagram, explain the working of biogas plant. What are the components of a micro hydel power plant	10	KTUDec 2017		
2	Explain the production of ethanol for biomass for fuel applications.	4	KTUDec 2018		
3	Write brief notes on any three types of gasifiers used for biomass to fuel conversion. Draw the layout of a micro hydro project.	10	KTUDec 2018		
4	Briefly describe about Fuel Cell Technology, Hydrogen Energy, Alcohol energy and Power from Satellite stations	10	KTUApril 2018		
5	Explain how fuel cell works as a renewable energy source.	5	KTUApril 2018		
6	Explain the design and selection of different types of turbines used for small hydro plants.	5	KTUApril 2018		
7	Describe how energy is harnessed from satellite stations. Explain the how urban waste is converted into useful energy.	10	KTUApril 2018		
8	Explain the process of anaerobic digestion of biomass into biogas. Draw the schematic diagram of a biodigestor	5	KTUApril 2018		
9	Write notes on a)Fuel cell b)Small hydro resources c)Power from satellite stations d)Hydrogen energy	20	KU Dec 2015		

	e)Alcohol energy		
10	With a neat schematic diagram, explain the biomass gasification based electric power generation system. Describe the working and constructional features of PEM fuel cell	10	KTUDec2 017
11	Draw the schematic of a KVIC type of bio gas plant. Briefly explain the power generation from satellites.	10	KTUDec2 018
12	Explain any one type of fuel cell.	5	KTUDec2 018