S5 CSE QUESTION BANK

COMPUTER SCIENCE & ENGINEERING

VIDYA ACADEMY OF SCIENCE AND TECHNOLOGY TECHNICAL CAMPUS KILIMANOOR

(A unit of Vidya International Charitable Trust) Accredited by NAAC with ''B++'' grade

Index

Code	Subject
CST 301	Formal Languages and Automata Theory
CST 303	Computer Networks
CST 305	System Software
CST 307	Microprocessors and Micro Controllers
CST 309	Management of Software Systems
MNC 301	Disater management

CST301 FORMAL LANGUAGES AND AUTOMATA THEORY

	MODULE 1		
SI.	Questions	Mar	KTU/KU
No		ks	Month/Year
	Construct a DFA for strings in which first and last letters do not match. $\sum = \{a, \}$		
1	b}	3	DEC 22,23
2	Prove that, if L is accepted by an ordinary NFA, there exist an equivalent ϵ -	7	
	NFA that also accepts L		DEC 22,20
3	Design an NFA (without E-moves) for strings having substring 'bab'. Convert	7	
	it into equivalent DFA. $\sum = \{a, b\}$		DEC 22
4	Construct an ϵ -NFA for the language $L = \{ 0^n \ 1^m \ 2^p / n, m, p \ge 0 \}$ and convert	7	
	it into equivalent NFA without ϵ -transitions		DEC 22
5	Draw the state transition diagram showing a DFA for recognizing the	3	
	language L over the alphabet set $\Sigma = \{a, b\}$:		
	$L = \{x \mid x \in \Sigma^* \text{ and the number of a in } x \text{ is divisible by 2 or 3} \}.$		DEC 21
6	Write a Regular Grammar G for the language: $L = \{0^n \ 1^m : n, m \ge 1\}$	3	DEC 21
7	Draw the state-transition diagram showing a DFA for recognizing the	6	
	language: $L = \{x \in \{a,b\}^* every block of five consecutive symbols in x$		DEC 21
	contains two consecutive a's.}		
8	Draw the state-transition diagram showing an NFA N for the following	8	
	language L. Obtain the DFA D equivalent to N by applying the subset		DEC 21,23
	construction algorithm. $L = \{x \in \{a, b\} * x \text{ contains 'bab' as a substring} \}$		
9	Define Regular Grammar and write Regular Grammar G for the following	7	
	language : $L = \{x \in \{a, b\} * x \text{ does not ends with 'bb' } \}$		DEC 21
10	Draw transition diagram for NFA (without ϵ -moves) for strings starting with	3	DEC 2023
	'10' or '11'. $\Sigma = \{0,1\}.$		
11	Design a DFA for strings in which number of a's is multiple of 3 and number	6	DEC 2023
	of b's is multiple of 2. $\Sigma = \{a, b\}$		
12	Construct a regular grammar for $L = \{0^n \ 11 n \ge 1\}$. Construct deterministic finite	7	DEC 2023
	automata for the same		

	MODULE 2		
SI.	Questions	Mark	KTU/KU
No		S	Month/Year
1	Generate regular expression for strings in which number of a's is a multiple of	3	DEC 22
	three. $\sum = \{a, b\}$		
2	Develop equivalent automata for the Regular Expression	7	DEC 22
	$(a+b)^*aabb(a^*+bb)^*$		
3	Prove that for every Regular Expression ' <i>R</i> ', there is an ϵ -NFA ' <i>M</i> '	7	DEC 22
4	List out the rules for writing regular expressions. Convert the following DFA	7	DEC 22
	to its equivalent Regular Expression		
	b a,b		
	q_0 a q_1		
5	Construct an ε -NFA for the regular expression $(a+b)*ab(a+b)*$	3	DEC 21
6	Find the equivalent Regular Expression using Kleene's construction for the	8	DEC 21,23
	language represented by the following DFA.		
7	Using pumping lemma for Regular Languages, prove that the language	7	DEC 21
	$L = \{0^n n \text{ is a perfect square}\}$ is not Regular.		
8	Obtain the minimum state DFA for the following DFA.	7	DEC 21
Ũ	a b	,	
	0 1 2		
	1 4 5		
	2 0 3		
	3 5 2		
	4 1 0		
	5 4 3		

9	Give a regular expression for the set of all strings not containing 101 as a	3	SEP 20
	substring		
10	State pumping lemma for regular languages. Prove that the language $L =$	5	SEP 20
	$\{a^{n^2} n > 0\}$ is not regular.		
11	Give a regular expression for the set of all strings not containing 101 as a	3	DEC 23
	Substring		
12	Develop equivalent automata for the R.E. $(ab + b)^*(a+bb)^*a^*$.	7	DEC 2023

	MODULE 3		
Sl no	Questions	Marks	KTU/KU Month/Year
1	With suitable example, explain about ambiguous grammar	3	DEC 22
2	State Myhill - Nerode Theorem	3	DEC 22
3	What is Greibach Normal Form (GNF)? Convert the following CFG to GNF $S \rightarrow AA / a, A \rightarrow SS / b$	7	DEC 22
4	Design CFG for the following languages (i) Palindromes over $\{a, b\}$ (ii) Stings with more than 2 zeros. $\sum = \{0, 1\}$ (iii) $(\theta+1)^*(\theta1)^*(\theta+1)^*$	7	DEC 22
5	What is Chomsky Normal Form (CNF)? Convert the following productions to CNF. $S \rightarrow aSa / bSb / SS / E$	7	DEC 22,23
6	Write a Context-Free Grammar for the language $L = \{wcw^r w \in \{a,b\}^*\}, 3w^r$ represents the reverse of w.	3	DEC 21

7	Consider the following productions:	7	DEC 21
	7		
	$S \rightarrow aB \mid bA$		
	$A \rightarrow aS \mid bAA \mid a$		
	$B \rightarrow bS \mid aBB \mid b$		
	For the string 'baaabbba' find		
	i) The leftmost derivation		
	ii) The rightmost derivation		
	iii) The parse tree		
8	Construct the Grammars in Chomsky Normal Form generating the set of	7	DEC 21
	all strings over {a,b} consisting of equal number of a's and b's.		
9	Find the Greibach Normal Form for the following Context Free Grammar	7	DEC 21
	$S \rightarrow XA \mid BB$, $B \rightarrow b \mid SB$, $X \rightarrow b$, $A \rightarrow a$		
10	Convert the Context-Free Grammar with productions: $\{S \rightarrow aSb \epsilon\}$ into	7	DEC 2023
	Greibach Normal form		
11	Convert the grammar $\{S \rightarrow AaCb / ABa, A \rightarrow bAa / a, B \rightarrow BaB / b, C \rightarrow c\}$ to	7	DEC 2023
	CNF		
12	Write CFG equivalent to the regular expression $0*1(0+1)*+1$	3	DEC 2023

	MODULE 4		
Sl	Questions	Marks	KTU/KU
no			Month/Year
1	Whether DPDA and NPDA are equivalent? Justify your answer	3	DEC 22
2	Prove that for every PDA accepted by final state, there exists an equivalent PDA accepted by empty stack.	7	DEC 22
3	Design PDA for set of even length palindromes over {a, b}. Illustrate the working with suitable example	7	DEC 22

111111111number of occurrences of the symbol p in the string x 111 <th></th> <th></th> <th></th> <th></th>				
5 Osing pumping lemma for CrEs, show that $D = p(w)^{2} p(w)^{2} p(w)^{2}$ for $C = 0$. DEC: 6 Write the transition functions of PDA with acceptance by Final State for the language $L = \{a^{n} b^{n} : n >= 0\}$. 3 DEC: 7 Design a PDA for the language $L = \{wv' \mid w \in \{a,b\}^{*}\}$. Also illustrate the computation of the PDA on the string 'aabbaa'. 7 DEC: 8 Construct a CFG to generate L(M) where $M = (\{p, q\}, \{0, 1\}, \{X, Z_{0}\}, \delta, q, Z_{0})$ 7 DEC: 7 , Ø } where δ is defined as follows: $\delta (q, 0, Z_{0}) = (q, XZ_{0})$ 7 DEC: 8 Construct a CFG to generate L(M) where $M = (\{p, q\}, \{0, 1\}, \{X, Z_{0}\}, \delta, q, Z_{0})$ 7 DEC: 7 , Ø } where δ is defined as follows: $\delta (q, 0, Z_{0}) = (q, XZ_{0})$ $\delta (q, 0, X) = (q, XX)$ $\delta (q, 0, X) = (p, e)$ $\delta (p, e, X) = (p, e)$ $\delta (p, e, Z_{0}) = (p, e)$ $\delta (p, e, $	4	-	7	DEC 22
5 Comp pumping ramping				
Write the transition functions of PDA with acceptance by Final State for the language L = {a ⁿ b ⁿ : n >= 0}.Design a PDA for the language L = {ww ^r w \in {a,b}* }. Also illustrate the computation of the PDA on the string 'aabbaa'.DEC :8Construct a CFG to generate L(M) where M = ({p, q}, {0, 1}, {X, Z_0}, \delta, q, Z_0 77DEC :9where δ is defined as follows: δ (q, 0, Z_0) = (q, XZ_0) δ (q, 1, X) = (p, ε) δ (p, ε , X) = (p, ε) δ (p, ε , X) = (p, ε)7DEC :9Using pumping lemma for Context free languages, prove that the language T 7DEC :10Prove that CFLs are closed under Union, Concatenation and Homomorphism.7DEC :11Design a PDA for strings in which number of a's is less than number of b's.7DEC :	5		7	DEC 22
besign a PDA for the language $L = \{ww^{-1} w \in \{a,b\}^{w}\}$. Also industrate the computation of the PDA on the string 'aabbaa'. 8 Construct a CFG to generate L(M) where $M = (\{p, q\}, \{0, 1\}, \{X, Z_0\}, \delta, q, Z_0 = 7]$ $\{\emptyset\}$ where δ is defined as follows: $\delta(q, 0, Z_0) = (q, XZ_0)$ $\delta(q, 0, X) = (q, XX)$ $\delta(q, 0, X) = (q, XX)$ $\delta(q, 1, X) = (p, \varepsilon)$ $\delta(p, \varepsilon, X) = (p, \varepsilon)$ $\delta(p, \varepsilon, Z_0) = (p, \varepsilon)$ 9 Using pumping lemma for Context free languages, prove that the language 7 $L = \{a^n b^n c^n n \ge 1\}$. 10 Prove that CFLs are closed under Union, Concatenation and Homomorphism. 11 Design a PDA for strings in which number of a's is less than number of b's. 12 Using Pumping lemma prove the given language is not context free. 7 DEC 20	6		3	DEC 21
7.Ø } where δ is defined as follows:.Ø } where δ is defined as follows:.Ø (ϕ , 0, Z_0) = (q , XZ_0) δ (q , 0, Z_0) = (q , XZ_0) δ (q , 0, X) = (q , XX) δ (q , 1, X) = (p , ε) δ (p , 1, X) = (p , ε) δ (p , ε , X) = (p , ε)9Using pumping lemma for Context free languages, prove that the language 7.10Prove that CFLs are closed under Union, Concatenation and Homomorphism11Design a PDA for strings in which number of a's is less than number of b's712Using Pumping lemma prove the given language is not context free7	7		7	DEC 21
$ \begin{cases} \delta(q, 0, Z_0) = (q, XZ_0) \\ \delta(q, 0, X) = (q, XX) \\ \delta(q, 1, X) = (p, \varepsilon) \\ \delta(p, 1, X) = (p, \varepsilon) \\ \delta(p, \varepsilon, X) = (p, \varepsilon) \\ \delta(p, \varepsilon, Z_0) = (p, \varepsilon) \end{cases} $ $ \begin{cases} 9 \\ L = \{ a^n b^n c^n n > 1 \}. \end{cases} $ $ for the the language set of the lang$	8		7	DEC 21
$\delta(q, 0, X) = (q, XX)$ $\delta(q, 1, X) = (p, \varepsilon)$ $\delta(p, 1, X) = (p, \varepsilon)$ $\delta(p, \varepsilon, X) = (p, \varepsilon)$ $\delta(p, \varepsilon, Z_0) = (p, \varepsilon)$ 9 Using pumping lemma for Context free languages, prove that the language 7 DEC 2 7 $L = \{ a^n b^n c^n n > = 1 \}.$ 10 Prove that CFLs are closed under Union, Concatenation and Homomorphism. 7 DEC 2 11 Design a PDA for strings in which number of a's is less than number of b's. 7 DEC 2 12 Using Pumping lemma prove the given language is not context free. 7 DEC 2		, \emptyset } where δ is defined as follows:		
$\delta(q, 1, X) = (p, \varepsilon)$ $\delta(p, 1, X) = (p, \varepsilon)$ $\delta(p, \varepsilon, X) = (p, \varepsilon)$ $\delta(p, \varepsilon, Z_0) = (p, \varepsilon)$ 9 Using pumping lemma for Context free languages, prove that the language 7 $L = \{ a^n b^n c^n n \ge 1 \}.$ 10 Prove that CFLs are closed under Union, Concatenation and Homomorphism. 7 DEC 20 11 Design a PDA for strings in which number of a's is less than number of b's. 7 DEC 20 12 Using Pumping lemma prove the given language is not context free. 7 DEC 20		$\delta(q, 0, Z_0) = (q, XZ_0)$		
$\delta(\mathbf{p}, 1, \mathbf{X}) = (\mathbf{p}, \varepsilon)$ $\delta(\mathbf{p}, \varepsilon, \mathbf{X}) = (\mathbf{p}, \varepsilon)$ $\delta(\mathbf{p}, \varepsilon, \mathbf{X}) = (\mathbf{p}, \varepsilon)$ 9 Using pumping lemma for Context free languages, prove that the language 7 $L = \{ a^{n} b^{n} c^{n} n \ge 1 \}.$ 10 Prove that CFLs are closed under Union, Concatenation and Homomorphism. 7 DEC 20 11 Design a PDA for strings in which number of a's is less than number of b's. 7 DEC 20 12 Using Pumping lemma prove the given language is not context free. 7 DEC 20		$\delta (q, 0, X) = (q, XX)$		
$ \begin{array}{c c} \delta \left(p, \epsilon, X \right) = \left(p, \epsilon \right) \\ \delta \left(p, \epsilon, Z_0 \right) = \left(p, \epsilon \right) \end{array} \end{array} $ $ \begin{array}{c c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		$\delta(\mathbf{q}, 1, \mathbf{X}) = (\mathbf{p}, \varepsilon)$		
$\frac{\delta(\mathbf{p}, \varepsilon, \mathbf{Z}_0) = (\mathbf{p}, \varepsilon)}{0}$ Using pumping lemma for Context free languages, prove that the language $\frac{7}{10}$ DEC $\frac{100}{10}$ $\frac{L = \{ a^n b^n c^n n \ge 1 \}}{10}$ Prove that CFLs are closed under Union, Concatenation and Homomorphism. $\frac{7}{10}$ DEC $\frac{11}{10}$ Design a PDA for strings in which number of a's is less than number of b's. $\frac{7}{10}$ DEC $\frac{11}{10}$ Using Pumping lemma prove the given language is not context free. $\frac{7}{10}$ DEC $\frac{11}{10}$		$\delta(\mathbf{p}, 1, \mathbf{X}) = (\mathbf{p}, \varepsilon)$		
9 Using pumping lemma for Context free languages, prove that the language 7 DEC 2 7 $L = \{ a^n b^n c^n n > = 1 \}.$ 7 DEC 2 10 Prove that CFLs are closed under Union, Concatenation and Homomorphism. 7 DEC 2 11 Design a PDA for strings in which number of a's is less than number of b's. 7 DEC 2 12 Using Pumping lemma prove the given language is not context free. 7 DEC 2		$\delta(\mathbf{p}, \varepsilon, \mathbf{X}) = (\mathbf{p}, \varepsilon)$		
Osing pumping remna for Context free languages, prove that the language7 $L = \{ a^n b^n c^n n >= 1 \}.$ 10Prove that CFLs are closed under Union, Concatenation and Homomorphism.7DEC 2011Design a PDA for strings in which number of a's is less than number of b's.712Using Pumping lemma prove the given language is not context free.7DEC 20		$\delta(\mathbf{p}, \boldsymbol{\varepsilon}, \mathbf{Z}_0) = (\mathbf{p}, \boldsymbol{\varepsilon})$		
10 Prove that CFLs are closed under Union, Concatenation and Homomorphism. 7 DEC 20 11 Design a PDA for strings in which number of a's is less than number of b's. 7 DEC 20 12 Using Pumping lemma prove the given language is not context free. 7 DEC 20	9		7	DEC 21
11 Design a PDA for strings in which number of a's is less than number of b's. 7 DEC 20 12 Using Pumping lemma prove the given language is not context free. 7 DEC 20		$L = \{ a^n b^n c^n n \ge 1 \}.$		
12 Using Pumping lemma prove the given language is not context free. 7 DEC 20	10	Prove that CFLs are closed under Union, Concatenation and Homomorphism.	7	DEC 21
	11	Design a PDA for strings in which number of a's is less than number of b's.	7	DEC 2023
$I = \{a, b, 2b, a, b, b, a, b$	12	Using Pumping lemma prove the given language is not context free.	7	DEC 2023
$L=\{ano2ncn where n>=1\}.$		$L=\{anb2ncn where n>=1\}.$		

	MODULE 5		
Sl no	Questions	Mar ks	KTU/KU
			Month/Year
1	Differentiate between Recursive and Recursively Enumerable languages	3	DEC 22
2	Design TM for L = {anbman / m, $n > 0$ }. Illustrate the working with suitable	7	DEC 22
	example		
3	Explain Chomsky hierarchy for formal languages and evaluate various types	7	DEC 22
4	Prove that TM halting problem is undecidable	7	DEC 22
5	Write the formal definition of Context Sensitive Grammar and write the CSG	3	DEC 21
	for the language $L = \{ an bn cn n \ge 1 \}$.		
6	Design Linear Bounded Automata for the language $L = \{ an bn cn n \ge 1 \}$.	7	DEC 21
7	Design a Turing Machine for the language $L = \{ an b2n n \ge 1 \}$. Illustrate the	7	DEC 21
	computation of TM on the input 'aaabbbbbb'.		
8	Design a TM to compute the 2's complement of a binary string.	5	SEP 20
9	Define a Universal Turing Machine (UTM). With the help of suitable	6	SEP 20
	arguments show the simulation of other Turing machines by a UTM.		
10	Design a TM to find the sum of two numbers m and n. Assume that initially	7	DEC 2023
	the tape contains m number of 0s followed by # followed by n number of 0s		
11	Design a TM to find the 1's complement of a binary number.	3	DEC 2023
12	Differentiate Recursive and Recursively Enumerable Languages.	3	DEC 2023

CST303 - COMPUTER NETWORKS

MODULE 1

Sl. No.	Questions	Marks	Month/Year
1	Define simplex, half duplex and full duplex transmission mode. Give one example for each.	3	JUNE 24 DEC 18 DEC21
2	How computer networks are categorized based on scale? Explain the features of each network.	8	DEC 23
3	Differentiate between Manchester encoding and Differential Manchester encoding with suitable example.	6	DEC 23
4	Explain the various physical topologies with neat sketch	10	DEC 23
5	Define bandwidth-delay product with example.	3	DEC 23
6	Differentiate between connection-oriented and connection-less services	3	DEC -23
7	Explain the various performance indicators used in communication	3	DEC 23 DEC 17 APR 18
8	Describe the ISO/OSI layered architecture with the help of a neat diagram.	7	DEC 23, APR 18 DEC 21
9	Write the functions of data link and network layer of OSI reference model	10	JUNE 24, DEC23, APR 18
10	What is the transmission time of a packet sent by a station if the length of the packets 1 million bytes and the bandwidth of the channel is 200 Kbps?	4	DEC 21
	Compare Twisted Pair, Coaxial Cable and Optical Fibre guided transmission media	5	MAY19 DEC 20 DEC 21
12	What are the OSI service primitives for connection oriented service?	3	APR21
	MODULE -II		
1	Draw the frame format of Ethernet	3	JUN24
2	Generate the CRC code for the data word of 110010101. The divisor is 10101	3	JUN24
3	Explain the various framing methods used in data link layer	3	DEC 23

4	Which are the different types of errors? Explain with examples.	3	DEC 23
4	which are the different types of errors? Explain with examples.	5	DEC 25
5	A bit streqm 10011101 is transmitted using the CRC method. The generator polynomial is $x_3 + 1$. Show the actual bit string transmitted.	9	DEC 21
6	Differentiate between I -persistent and p-persistent CSMA.	9	DEC 23
7	Draw and explain IEEE 802.11 Wireless LAN frame structure	3	JUN24 DEC 21
8	Assuming even parity, find the parity bit for each of the following data: i. 1011010 ii.000000 iii. 10010001	9	DEC23
9	How collision is avoided in CSMA/CA? Describe the different strategies used for this	4	DEC21
10	Explain the concept of Sliding window protocols. Differentiate between the working of One-bit sliding window, Selective repeat and Go-back- N bidirectional protocols	3	DEC21
11	How collision is avoided in CSMA/CA? Describe the different strategies used for this	14	DEC20
12	How does Multiple Access with Collision Avoidance solve the hidden node problem and exposed node problem in Wireless LANs? .	14	DEC20
	MODULE -III		
1	Explain link state routing algorithm with an example	10	JUN24
2	Explain how shortest path is performed with an example	8	JUN24
3	Explain the techniques for achieving good QoS	6	JUN24
4	Explain distance vector routing algorithm with an example	8	DEC 23
5	Write notes on load shedding	4	DEC 23
6	Explain any three closed loop congestion control techniques	7	DEC 23
7	Illustrate the packet routing process of mobile hosts	6	MAY 19 DEC 21
	Explain how routing is performed using link state algorithm. Illustrate with an example	7	Dec 23
	Explain any three closed loop congestion control techniques	7	Dec 23
10	Explain the steps involved in Multicast routing	6	Dec 23
	MODULE IV		
1	Explain OSPF routing algorithm	7	JUN24
2	Draw and explain BOOTP message format	7	JUN24

1	How do you submat the Class C ID address 105 1 1 0 so as to have 10	3	DEC21
4	How do you subnet the Class C IP address 195.1.1.0 so as to have 10 subnets with a maximum of 12 hosts in each subnet	-	DEC21
5	A network on the Internet has a subnet mask of 255.255.240.0. What is	3	DEC21
	the maximum number of hosts it can handle?		JUN 24
6	Describe the features of BGP. How does BGP avoid count to infinity	3	DEC 23
	problem		
7	Draw and explain BOOTP message format.	9	DEC 23
8	What is moont by outsping actively routing grate cally Euglain the working	5	DEC19
	What is meant by exterior gateway routing protocol? Explain the working	3	DEC18
9	of BGP?	5	DEC21,
9	What is the function of ARP? Explain its working	3	DEC18,
			DEC19
10	Describe stub networks, multi-connected networks and transit networks	5	DEC21
10	Describe stud networks, multi-connected networks and transit networks	3	DEC 20, DEC 21
11	Differentiate between BOOTP and DHCP	5	DEC 21 DEC 21
11	Differentiate between boott and brief	5	DEC 21
12	What is internet multicasting? What is IGMP? Explain any three IGMP	6	DEC17
	messages	-	DEC19.
			DEC21
	MODULE V		
1	How recursive query resolution is performed in DNS?	3	DEC 23
2	Explain the working of TCP.	7	JUNE24
3	List the transport service primitives.	7	DEC 23
4	How does FTP handle file transfer operation?	7	JUN24,
			DEC23
			DEC181
5	Describe the working of electronic mail system.	8	DEC 23
		-	
6	Explain SNMP basic components and their functions. Describe the basic	7	DEC 17
	commands used in SNMP		DEC 21
7	What is DNS? Explain resource record and name server. Illustrate DNS	7	DEC 21
	working.		DEC20
8	What is the significance of circular sending and receiving buffers in TCP?	3	DEC 21
	How are they used?.		
9	Write notes on MIME	5,6	DEC 17
			MAY 19
10	Describe the name-address resolution techniques used in DNS	5	DEC 21
11	What is TCP? Draw and explain TCP segment header. Explain TCP	4	DEC23
	connection establishment process		DEC17
			DEC 21
12	Describe the operation and packet format of UDP	5	DEC17
	- •		JUN24

	MODULE 1				
Sl. No	Questions	Marks	KTU/K U		
1	Write a subroutine for SIC/XE that will read a record into a buffer. The record may be any length from 1 to 100 bytes. The end of record is marked with "null" character (ASCII code 00). The subroutine should place the length of record into a variable named LENGTH. Use immediate addressing and register –to –register instructions to make the process efficient as possible.	4	APR 18		
2	Write a sequence of instructions for SIC to set ALPHA = BETA*9 + GAMMA	3	DEC 18 DEC 21		
3	List out the various registers used in SIC along with their purpose	3	DEC 18 DEC 22		
4	.Explain any three addressing modes in SIC/XE.	3	JUN 24		
5	What are the functions of operating systems	3	DEC 18 JUN 24		
6	Compare the following with reference to SIC and SIC/XE machines: i. Memory ii. Instruction format	4	SEP 20 DEC 21		
7	Suppose RECORD contains a 100-byte record. Write a subroutine for SIC that will write this record onto device 05.	5	DEC 20		
8	Explain the different I/O instructions in SIC.	3	DEC 21		
9	Illustrate the roles and functions of Operating System, Assembler, Compiler and Linker in a modern computer system.	8	DEC 21		
10	Describe the use of n,i,x,b,p and e bits in the SIC/XE instruction format. Write the binary combination for these bits such that the resultant target address would be as below and also state what would be the addressing modes for each. i. (PC) + disp ii. (B) + disp iii. (PC) + disp + (X) iv. (B) + disp + (X)	8	DEC 21 DEC 23		
11	Distinguish between interpreter and compiler.	3	DEC 22		
12	List and explain any three system softwares.	6	DEC 23		

			MODULE 2	2	<u> </u>		
1	What is meant by forward reference? How is it resolved by two pass assembler.						DEC18 MAY19 DEC 2
2	Describe da	ta structures used	in the two pass	SIC assemb	ler program	3	DEC 1
	Give algorit	hm for pass 1 of a	two pass SIC a	assembler			DEC 2
							DEC 2
							DEC 2
3		e examples, how nodes of SIC/XE				5	DEC 1 JUN 24
4	With the aid	l of an explain the	second pass of	a two pass a	algorithm	6	MAY 1
							DEC 2
5	Consider the statements in SIC program. Consider the program being assembled using a 2 pass assembler.					3	SEP 20
	Line no	Location	Label	Opcode	Operand		
	10	1000	LENGTH	RESW	4		
	20		NEW	WORD	3		
6	pass 1? Suppose the the machine SIC/XE inst addressing r	e the address value address associate equivalent code f ruction, by clearly node and the setti	d with the syml or STL is 14. A indicating the ng of different f	bol RETADI Assemble the instruction f	R is 0030 and given format,	5	SEP 2
		ed to RETADR is		0	und		
	Location	n Label FIRST	Opcode STL	Opera RETA			
	1						

			gram? Do all instructions of SIC/XE machine on because of relocation? Justify your answer	4	DEC 2
8	Give the stru record.	ucture and pu	rpose of Modification record and Define	3	DEC 2
					DEC2
9	Write a SIC elements.	program to p	erform linear search in an array of 100	6	DEC 2
10	The machine ADD – 18, T	e code for the ΓΙΧ – 2C, ST	bject program for the below SIC program. instructions used are: $LDX - 04$, $LDA - 00$, A - 0C, $JLT - 38$ and $RSUB - 4C$. Show the each instruction	6	DEC 2
	SUM	START	4000		
	FIRST	LDX	ZERO		
		LDA	ZERO		
	LOOP	ADD	TABLE, X		
	62003266267	TIX	COUNT		
		JLT	LOOP		
		STA	TOTAL		
		RSUB			
	TABLE	RESW	2000		
	COUNT	RESW	1		
	ZERO	WORD	0		
	TOTAL	RESW	1		
		END	FIRST		
11	GAMMA, so DELTA to th	etting ALPH. he remainder.	A to the integer portion of the quotient and Use register to-register instructions to make	5	DEC 2
				6	DEC 2
11	GAMMA DELTA to the calcul Write a SI	, s o tl <u>ati</u> [C	, setting ALPH. the remainder. ation as efficient C program for	equence of instructions for SIC/XE to divide BETA by , setting ALPHA to the integer portion of the quotient and o the remainder. Use register to-register instructions to make ation as efficient as possible. IC program for doing the following arithmetic operations: ALPHA + INCR – 1 DELTA = GAMMA + INCR – 1	, setting ALPHA to the integer portion of the quotient and o the remainder. Use register to-register instructions to make ation as efficient as possible.5IC program for doing the following arithmetic operations:
12	DETA – AL				
12	DETA - AL		MODULE 3		
12		on multi pass		5	APR 1
		on multi pass	MODULE 3 assembler with example	5	
		on multi pass		5	
		on multi pass		5	DEC1
		on multi pass		5	APR1 DEC1 DEC 2 JUN 2

2	Distingu	ish between	n program blo	cks and control section	9	DEC 18
	How th	ne assemble	r handles mu	ltiple program blocks	9	DEC 21
				1 1 0		DEC 22
						DEC 23
3	Write no	tes on MAS	SM assembler	-S	3	DEC 17
						DEC 22
4	Distingu	ish between	n Program blo	ocks and control section.	8	DEC18
	How d	oes the asse	embler handle	multiple program blocks?		SEP 20
						DEC 21
						DEC 23
5	List out	the basic fu	nctions of ass	semblers with proper examples	4	APR 18
6	Explain	two passes	of assembler	algorithm with proper example	9	APR 18
7	1	help of an ng in each		lain how to find target address during	6	DEC 18
8				the different record types present in an e control sections.	4	SEP 20
9	Develop	the record		header, text and end records) for the	5	SEP 20
	Loc		5	Source Statement		
	0000	COPY	START	0		
			EXTDEF	BUFFER, BUFFEND, LENGTH		
			EXTREF	RDREC,WRREC		
	0000	FIRST	STL	RETADR		
	0003	CLOOP	+JSUB	RDREC		
	0007		LDA	LENGTH		
	000A		COMP	#0		
	000D		JEQ	ENDFIL		
	0010		+JSUB	WRREC		
	0014		J	CLOOP		
	0017	ENDFIL	LDA	=C 'EOF'		
	001A		STA	BUFFER		
	001D		LDA	#3		
	0020		STA	LENGTH		
	0023		+JSUB	WRREC		
	0027		J	@RETADR		

	002A	RETADR	RESW	1					
	002D	LENGTH	RESW	1					
			LTORG ·						
	0030	*	=C 'EOF'						
	0033	BUFFER	RESB	4096					
	1033	BUFEND	EQU	*					
	1000	MAXLEN	EQU	BUFEND	-BUFFER				
10	machine	independen	n assembler o t? Support yo					3	DEC
11	category		ode to explain t	the concept of	fmultipass	assembler			
11	1	A	ode to explain t	EQU	-	/2		7	DEC
	2	В		EQU	C	-D			
	3 4	E D		EQU RESB		0-1 096			
	5	C		EQU	4	090			
		· ·							1
12		the differenc e with examp	e between lit ble	eral and im	mediate o	perand?		6	JUN
12						perand?		6	JUN
12	Illustrate	e with examp	ole	MOI	mediate o	perand?		6	
	Illustrate	e with examp		MOI		perand?			DEC
	Illustrate	e with examp	ole	MOI		perand?			DEC APR
	Illustrate	e with examp	ole	MOI		perand?			DEC APR MAY
	Illustrate	e with examp	ole	MOI		perand?			DEC APR MAY DEC
	Illustrate	e with examp	ole n absolute loa	MOI ader	DULE 4				DEC APR MAY DEC DEC
1	Illustrate	e with examp	ole	MOI ader	DULE 4			6	DEC APR MAY DEC DEC APR
1	Illustrate Give alg	e with examp orithm for an	n absolute loa	<u>MOI</u> ader Explain wit	DULE 4	·		6	DEC APR MAY DEC DEC APR MAY
1	Illustrate Give alg	e with examp orithm for an	ole n absolute loa	<u>MOI</u> ader Explain wit	DULE 4	·		6	DEC APR MAY DEC DEC APR MAY DEC
1	Illustrate Give alg Write no Differen	e with examp orithm for an otes on Dyna tiate between	n absolute loa mic linking. I	MOI ader Explain wit ders and lin	DULE 4	rs	ive	6	DEC APR MAY DEC DEC APR MAY DEC DEC
1 2 3	Illustrate Give alg Write nc Differen Describe	e with examp orithm for a otes on Dyna tiate between e the data stru	n absolute loa n in absolute loa n linkage load	MOI ader Explain wit ders and lin for linking 1	DULE 4	rs	ive	6 4 3	DEC APR MAY DEC DEC APR MAY DEC DEC DEC
1 2 3	Illustrate Give alg Write nc Differen Describe	e with examp orithm for a otes on Dyna tiate between e the data stru	n absolute loa mic linking. I	MOI ader Explain wit ders and lin for linking 1	DULE 4	rs	ive	6 4 3	DEC APR MAY DEC DEC APR MAY DEC DEC DEC DEC
1 2 3	Illustrate Give alg Write nc Differen Describe	e with examp orithm for a otes on Dyna tiate between e the data stru	n absolute loa n in absolute loa n linkage load	MOI ader Explain wit ders and lin for linking 1	DULE 4	rs	ive	6 4 3	DEC APR MAY DEC DEC APR MAY DEC DEC DEC DEC DEC DEC
1 2 3	Illustrate Give alg Write nc Differen Describe algorithr	e with examp orithm for an otes on Dyna tiate between e the data stru- n for pass1 of	n absolute loa n in absolute loa n linkage load	MOI ader Explain wit ders and lin for linking I loader	DULE 4	rs gorithm. G	ive	6 4 3	JUN JUN DEC APR MAY DEC DEC DEC DEC DEC DEC DEC JUN MAY

	What is the need of relocation in assembly programs? With a small example illustrate how relocation is handled in assemblers.		
6	Write the algorithm for Pass 2 of a Linking loader	6	MAY DEC 2
			DEC
7	List and explain different machine independent features of loader. Explain the working of one type of one pass Assembler	9	DEC SEP 2
8	What is the use of bitmask in program relocation? Illustrate with example.	3	DEC 2
9	With a help of neat diagram explain what is a linkage editor?	4	DEC
10	Outline the need and functions of a bootstrap loader.	3	DEC 2
11	Describe how the concepts of segments are handled in MASM assembler for 8086. Also compare near and far jump concept and its handling in MASM.	6	DEC
12	Describe about bootstrap loader with the help of an algorithm	8	JUN 2
	MODULE 5		
1	What is meant by line-by-line macro processor? What are its advantages?	5	SEP 2
2	What is conditional macro expansion?	5	SEP 2
3	Differentiate between character and block device drivers	10	DEC1 APR1 DEC1
			SEP 2
4	Explain the structure of text editors with the help of example and	5	DEC1
	diagram		MAY SEP 2
			DEC 2
		5	DEC1

6	What is a debugger ?Explain the different debugging methods in details	10	APR 18 JUN 24
7	Explain the various macroprocessor design options	6	JUN 24
8	Write down the situations where debugging by induction ,deduction and backtracking are used, explaining each process	10	SEP 20, DEC 21
9	With a simple diagram illustrate the communication pathway of an application program to a device through a device driver.	3	DEC 21
10	Explain the types of macro with example	8	DEC 22
11	Describe one pass macro processor algorithm and the data structures used in it	8	JUN 24 DEC 23
12	Explain any two machine independent macro processor features	8	JUN 24

CS 307 - MICROPROCESSORS AND MICROCONTROLLERS

MODULE 1

Sl. No.	Questions	Marks	Month/Year
1	List the registers used in 8086 microprocessor.	3	DEC/2017
2	Describe the functions of INTR, READY and HOLD signals.	3	DEC/2017, Jun24
3	List features of 8085 microprocessors.	3	DEC/2021
4	The value of Code Segment (CS) Register is 3054H and the value of different registers is as follows: BX: 4025H, IP: 1580H, DI: 5467H. Calculate the physical address of the next instruction to be fetched.	3	DEC/2021, 23
5	What are the flag bits available in flag register of 8086?	3	Apr/2018 DEC/2021
6	Describe maximum mode configuration of 8086	9	DEC -23
7	How does the 8086 processor access a word from an odd memory location? How many memory cycles does it take?	3	DEC/.2018
8	Find the physical address of the destination operands referred in the following instructions, if DS=0223H, DI=0CCCH and SI=1234H a) MOV [DI], AL b) MOV [SI][56H], BL	3	DEC/2018
9	Explain the physical and logical memory organization of 8086?	9	Apr/2018, Jun-24 DEC/20&23
10	Draw the Memory Read timing diagram of 8086 in Minimum mode. Describe the status of the relevant signals during each clock period.	9	DEC/2018, 2020, 2021 Jun-24
11	Give the architectural and signal differences between 8086 and 8088.	3	Apr-18, DEC/2017, 2021, 22, 23
12	Draw and explain the internal block diagram of 8086.	9	DEC/2017, 2021, 2022, 24
	MODULE -II		
1	State the significance of assembler directives in an assembly language program with suitable examples.	3	DEC/2017
2	Explain the working of the following instructions withsuitable example. a) IN b)SAR	3	Dec 2020
3	With the help of an example state the differences in the functioning aspects of the instructions SHR and SAR of8086.	3	Apr. 2018
4	List the 8086 instructions used for transferring data between registers, memory, stack, and I/O devices.	3	Dec 2021

5	Write an 8086assembly language program to check whether a string is palindrome or not. Assume that thestring and its length are stored at known memory locations.	9	Apr. 2018
6		9	DEC/ 2018
0	Write 8086 assembly language program to find the countof even and odd	9	DEC/ 2018
	numbers from a set of 10 sixteen bit numbers stored in location staring		
_	from a known address. Store the results in two different locations.		
7	Define the functions of the following 8086 assembler	3	DEC/2018,
	directives: a) ASSUME b) EQU c) OFFSET ,SEGMENT		2020, 2021
			&23, Jun-24
8	What are the different addressing modes supported by 8086.Explian with	9	DEC/2017,
	examples.		2018, 2022, 23
			Apr-18 Jun-24
9	Discuss about the data transfer instructions with examples.	4	DEC/2021
10	Write the functions performed by PUSH and POP instructions in 8086	3	DEC/2022
	with appropriate diagram.		
11	Write an assembly language program to find the total number of even	14	DEC/2022
	and odd numbers from an array of 16-bit numbers. Assume the array		
	contains 20 numbers and the starting location as 5500H. Draw the		
	flowchart for the program.		
12	Write an assembly language program to find the largest and smallest	14	DEC/2017,
	number from an unordered array of 16-bit numbers. Assume the array		2021 & 2022
	contains 15 numbers and the starting location as 2500H. Draw the		
	flowchart for the program.		
	MODULE -III		1
1	Describe interrupt cycle of 8086/8088 with neat diagram.	3	DEC/2017,
1	Describe interrupt cycle of 8080/8088 with heat diagram.	5	2020 & 2022
2	Give description about maskable and non maskable interrupt.	3	DEC/2017,
			2020, 22, 23
3	What is an Interrupt Vector Table (IVT)? Provide a diagrammatic	3	Apr/2018, 24
	representation of the IVT of 8086.		DEC/ 2018,
			20, 21, 22,23
4	With the help of a diagram explain the different blocks of 8259	9	Apr/2018
	Programmable Interrupt Controller.		DEC/2018
			2021 & 2022
5	Explain the stack structure of 8086.	4	DEC/21&23
	-		Jun-24
6	Interface two 32K X 8 EPROMS and two 32K X 8 RAM chips with 8086,	10	DEC/ 2021
	microprocessor and draw the suitable circuit showing their interfacing.	-	
7	Interface two numbers of 16Kx8 EPROM and 2 numbers of 4Kx8 RAM to	9	DEC/2020, 23
,	8086. Select suitable address map.	,	DEC/2020, 23
8	Interface two 4K*8 EPROMS and two 4K*8 RAM chip with 8086.Select	6	DEC/2017
Ũ	suitable address maps.	U	220,2011
9	Write notes on the following based on 8086: A) software interrupt B)	3	DEC/2022
)	hardware interrupt C) nested interrupt	5	DEC/2022
	MODULE 4		
1	Mention the salient features of basic I/O mode operation of and	8	DEC/2017
-	architecture of 8255.	÷	2020, 23,
			2020, 23,

			2021 & 2022,
			23 Jun-24
2	Draw the internal architecture of 8279 and explain.	9	DEC/2017, 2020 2022
3	Describe different modes of operation of peripheral ICs:8255 and 8259.	6	DEC/2017, 2020 & 2021
4	Explain the features and architecture of DMA controller.	4	Apr.2018 Dec 2021, 23 Jun-24
5	Describe the control word format of 8255 PPI.	4	DEC/2018
6	Explain the interfacing of an IO device to 8086 using peripheral I/O method	3	Dec 2020
7	Explain the 8254 programmable timer and its operation modes with a neat block diagram	9	Dec 2021, 2022
	MODULE 5		
1	With the help of a block diagram describe the different components of 8051.	10	Apr.2018, 24 Dec /2021, 23
2	What are the different addressing modes supported by 8051?	5	DEC/2017, 2020, 2021 & 2022, Jun-24
3	What is a microcontroller? Distinguish between a microcontroller and a microprocessor	5	Apr.2018, 24 Dec/2021
4	Discuss the structure of internal data memory (RAM) of 8051.	5	DEC/2018, 2020 & 2021
5	What is the size of 8051 Stack Pointer (SP)? Discuss the operation of 8051 stack.	4	DEC/2018 &2022
6	Describe Internal data memory organization of 8051 microcontroller.	9	DEC/2020, 23
7	Explain PSW of 8051 microcontroller	5	DEC/2018, 2020 &2022, Jun-24
8	State the name and purpose of any 6 special function registers (SFRs) of 8051 microcontroller.	5	Dec 2021, Jun-24
9	List the IO ports available in 8051	10	Dec 2021, Jun-24

CST309 Management of Software Systems

	Module I						
SL. No	Questions	Marks	Year				
1	Incremental model is better than waterfall model for most business, e- commerce and personal systems. Justify the statement. Or What is meant by incremental delivery of software? Mention its advantages and disadvantages. Or Outline the advantages of incremental development models over Waterfall model.	7 7 3	Dec2022/ Dec 2021				
2	Explain Agile Development techniques and Agile Project Management or Explain the principles of agile software development.	7	Dec2021/ June 2024				
3	What are the essential attributes of professional software engineering?	3	Dec 2023				
4	List out any three software process models.	3	Dec 2023				
5	Differentiate plan-driven and agile software development approach	3	Dec 2021				
6	Explain the major phases in waterfall model of software development. Which phase consumes the maximum effort for developing a typical software product? Or Explain the various stages of waterfall model. Also list out any three situations where waterfall model is only applicable. Or Explain waterfall model of software design	7	Dec2021/ Dec 2023 / June 2024				
7	Explain different process activities	8	Dec2021/ Dec 2024				
8	How does an agile approach help software developers to capture and define the user requirement effectively?	3	Dec 2022				
9	Mention the ethics of software engineering	3	June 2024				
10	Draw and explain the process of software specifications.	7	June 2024				

11	Design Boehm's Spiral model and its importance. Or Mention the situation s where Boehm's spiral model is used for software design. Also list out the advantages and disadvantages of spiral model. Or List out the situations where spiral model is used for software process.	7 3	Dec2022 / Dec 2024
12	Illustrate how the process differs in agile software development and traditional software development with a socially relevant case study.	7	Dec 2022
13	Describe the relevance of using Pair programming and Refactoring during Agile development process	7	Dec 2022

	Module II			
SL. No	Questions	Marks	Year	
1	Mention any three reasons to justify software architecture is important.	3	Dec 2023	
2	Illustrate Requirement elicitation and analysis process with the help of a diagram. or Explain the different stages in requirement elicitation. Or Why is requirements elicitation considered as a critical task in requirements engineering? Explain any two methods for requirements elicitation.	8 7 6	Dec 2021 / Dec 2023 / Dec 2021	
3	How do you prepare a software requirement specification?	3	Dec 2022 /Dec 2021	
4	Compare functional and non-functional requirements.	7/3	Dec 2023 / Dec 2022 / June 2024	
5	Explain the process of requirements validation in software process	7	June 2024	
6	Explain different architectural styles used in Software design or Explain different software architectures.	6 7	Dec 2021 June 2024	
7	Discuss the factors which are considered during the Components selection and design process.	3	Dec 2022	
8	What is software component? Explain the process of designing class- based components. or What is meant by component level design in software? Also explain the design of component level in web-apps.	7	Dec 2023 June 2024	

	Describe the various activities under Requirements engineering process.	7	Dec 2022
9	or List out generic activities needed in requirement engineering process	3	Dec 2023
10	Outline the concept of traceability matrix and Requirements management planning.	7/3	Dec 2022 June 2024
11	What are Use cases? Draw the Use case diagram for an ATM.	7	Dec 2022
	Explain Personas, Scenarios and Feature identification.		
12	or Define personas in software process. Also Explain the different aspects of persona. or With respect to software engineering explain i) Personas ii) Scenarios	7	Dec 2022 Dec2023 Jun 2024
	iii) user stories		
	Module III		
SL. No	Questions	Marks	Year
1	Differentiate between GPL and LGPL. or	3	Dec 2022
1	Explain the following open-source licence management. i) GPL ii) LGPL iii) BSD	7	Dec2023
2	Compare White Box testing and Black box testing.	3/7	Dec2021 Dec2022 Dec2023 June2024
3	Describe validation testing and integration testing methods of software.	7	Dec2023
4	Explain post-mortem evaluation in software process	3	Dec 2023
5	Differentiate between Formal and Informal review techniques. or Explain formal technical review. Also explain the objectives of technical review.	7	Dec2021 Dec2022 June2023
6	Explain System testing and its variants.	3/7	Dec 2021 Dec 2022
7	Explain software evolution process and software management.	7	Dec2023
8	Explain various types of testing documentation and its importance.	7	June 2024
9	What is meant by path testing in software design. Also explain the process of path testing.	7	Jun 2024

10	Describe Continuous Integration, Delivery and Deployment (CI/CD/CD) in DevOps Automation.	8/7	Dec 2021 Dec 2023
11	What are design patterns? What are the essential elements of design patterns?	7	Dec 2022
12	Differentiate between Top-down and Bottom-up Integration testing methods with suitable diagrams.	7	Dec 2022

	Module IV		
SL. No	Questions	Marks	Year
1	Describe the COCOMO cost, estimation model.	3	Jun 2024
2	List out the factors that affect software pricing.	3	Dec 2021
3	Mention any three features of software version management. or	3	Dec 2021
-	Explain version management in software engineering	7	Jun 2024
4	List out and explain the fundamental project management activities.	4	Dec 2021 Dec 2022
		10	Dec 2021
5	Explain the Software Risk management process with the help of neat diagram. With suitable diagram explain risk management process	7	Dec 2022 Dec 2023 June 2024
6	Define software configuration management. Explain different activities involved in configuration management.	10	Dec 2021
0	Describe the process of release and configuration management in software	7	Dec 2023
7	Summarize Software Project planning process.	4	Dec 2021
8	Describe Kanban methodology and lean approaches in software project management	7	Jun 2024
9	Explain the different factors influencing the project management.	7	Dec 2023
10	Discuss the role of using Backlogs and Sprints in SCRUM frameworks. or	37	Dec 2023
	Explain SCRUM framework for software development	/	
11	Explain plan driven development and project scheduling.	7	Dec 2022
	What is algorithmic cost modelling? What problems does it suffer from when compared with other approaches to cost estimation?	7	Dec 2022
12	or Explain any two techniques used for software cost estimation.	3	Dec 2022 Dec 2023

	Module V			
SL. No	Questions	Marks	Year	
1.	Discuss software quality dilemma.	3	Dec 2022	
2	Explain different types of failures in micro service system. Or Explain the important characteristics of micro services. Or	3	Dec 2023 June 2024	
	Describe the architecture of micro services. Also explain architecture design decisions	7		
3	Explain elements of Software Quality Assurance and SQA Tasks. or	3	Dec2021 Dec2022 Dec2023	
	Explain various elements of software quality assurance	7	June2024	
4	Describe different levels of the CMMI model.	3	Dec2021	
•	Explain CMMI software process improvement framework	7	Dec2023	
5	Describe the process software measurement and metrics	7	Jun 2024	
6	Explain the basic and intermediate level services provided by cloud service. Or	7	June 2024	
0	Explain the features of cloud-based software.	3		
7	List out the metrics that are used to measure software quality. Justify how these metrics interpret the quality of the Software.	5	Dec 2021	
8	Explain virtualization and container-based virtualization in cloud server.	7	Dec 2023	
0	Describe in detail about the Software Process Improvement (SPI) process.	10	Dec 2021 Dec 2022	
9	Or Outline the elements of a SPI framework	7 4		
10	Explain cloud software characteristics.	3	Dec 2022	
11	Compare CMMI and ISO 9001:2000. Or	7 3	Dec2022 Dec2023	
12	What are the software quality factors described under ISO 9001:2000. How is Software Quality achieved during the Software engineering process?	7	Dec2022 Dec2023	

MCN 301 DISASTER MANAGEMENT

<u> </u>	MODULE 1				
Sl.No	QUESTIONS	Mark s	Year		
1.	Define the term "biosphere" and describe the three main components that constitute it?	3	DEC 2023		
2.	What are disasters? What are their causes?	3	DEC 2023		
3.	What role do local governments play in implementing disaster management legislation in India?	3	DEC 2023		
4.	(a)Briefly explain Indian Monsoon and factors affecting Indian Monsoon?(b) Explain greenhouse effect and global warming?	10	DEC 2023		
5.	What are Tsunamis? How are thev caused?	10	DEC 2023		
б.	What distinguishes crisis counselling from regular counselling?	3	DEC 2023		
7.	Explain the following terms in the context of disaster management (a) Disaster 14 R'isk Management (b) Cris'is Counselling (c) Expos'irre (d) Early Warning \$ System (e) Damage Assessment (f) Resilience (g) Needs Assessment	10	DEC 2023		
8.	Define the following terms: a) Disaster b) Hazard c)Risk	6	DEC 2021		
9.	State and explain crisis counselling. Identify the necessity of crisis counselling.	8	DEC 2021		
10.	Differentiate between acceptable risk and residual risk.	3	DEC 2022		
11.	State the composition of lithosphere?	3	DEC 2022		
12.	Illustrate with diagram the layers of earth's atmosphere.	8	DEC 2022		
	Module 2		l		
	(a)Explain the types of vulnerabilities and approaches to assess them.(b) Explain the application of hazard maps.	8	DEC2023		

2.	Describe in detail the approaches and procedures involved in disaster risk	6	DEC2021
	assessment.		
3.	Explain the four different types of vulnerability. List any four socio- economic indicators of human capital as livelihood asset.	4	DEC2023
4.	Explain the application of hazard maps.	6	DEC 2023
5.	List the components of risk assessment. Explain the contemporary approaches to risk assessment.	9	DEC2022
6.	Explain the method of expressing population risk	5	DEC 2022
7.	Explain physical vulnerability and ecological vulnerability.	3	DEC2022
	MODULE 3		
1.	(a)Explain the factors that decide the nature of disaster response.(b) Explain disaster relief and international relief organizations.	10	DEC2023
2.	State the requirements for effective disaster response.	4	DEC 2021
3.	(a)Explain the core elements of disaster risk management.	8	DEC 2023
	(b) Explain the different disaster response actions.		
4.	Define 'relief' in the context of disaster management. Identify the principles guiding relief.	6	DEC 2021

5.	State the principle of qualitative risk assessment and the method of expressing risk qualitatively.	3	DEC 2021
6.	State the different types of disaster response	6	DEC 2021
7.	Briefly explain the levels of stakeholder participation in the context of disaster risk reduction	3	DEC 2023
8.	List any six public health services required in responding to disasters.	3	DEC 2022
9.	State and explain the types of disaster mitigation measures	4	DEC 2022
10.	Identify the factors that determine the nature of disaster response and explain	10	DEC 2022

11	State and explain the types of disaster preparedness	6	DEC 2022
12.	Identify the standard operating procedures to be followed during a disaster stage and explain.	8	DEC 2022
	MODULE 4		
1	How can one ensure effective disaster communication by outlining the necessary 9 steps, and what obstacles or barriers to communication should be considered in this context?	6	DEC 2023
2.	What is the process for identifying stakeholders in disaster management?	4	DEC 2023
3.	What are the barriers to communication?	4	DEC 2021
4.	Distinguish between risk communication and crisis communication.	3	DEC 2023
5.	Describe the effective ways of promoting stakeholder participation in disaster risk reduction. State its benefits.	4	DEC 2023
6.	Explain capacity building, relevance of capacity assessment and the	8	DEC2021
0.	different methods of assessing capacity in disaster risk management.	0	DLC2021
7.	State and explain the basic principles of participatory rural appraisal tools	5	DEC2022
8.	Explain the characteristics of effective crisis counsellors. State the advantages of crisis counselling.	9	DEC2022
9.	State and explain the steps for effective communication	8	DEC2022
	MODULE 5		
1.	Discuss the priorities for action identified in the Sendai Framework. How can these priorities be tailored to address the specific needs and challenges faced by India?	10	DEC 2023
2.	What role do local governments play in implementing disaster management 5 legislation in India?	4	DEC 2021
3.	State the targets, priorities and guiding principles of Sendai Framework for disaster risk reduction.	8	DEC 2021
4.	Explain the institutional arrangement for disaster management in India	6	DEC2021

5.	List the global targets of Sendai framework and explain	7	DEC 2022
6.	Explain the role, composition and responsibilities of National Disaster Management Authority.	7	DEC 2022
7.	Discuss the key features and objectives of the National Disaster Management 7 Policy in India. How does it guide the country in managing and reducing disaster risks?	10	DEC 2023
8.	What are the most common types of disaslers faced by India.	4	DEC 2023