S2 CSE QUESTION BANK 2023 COMPUTER SCIENCE & ENGINEERING

VIDYA ACADEMY OF SCIENCE AND TECHNOLOGY TECHNICAL CAMPUS, KILIMANOOR

ACCREDITED BY NAAC WITH B++ GRADE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDEX

SUBJECT CODE	SUBJECT NAME
MAT 102	Vector Calculus, Differential Equations and Transforms
PHT 110	Engineering Physics
EST 100	Engineering Mechanics
EST 130	Basics of Electronics and Electrical Engineering
HUN 102	Professional Communication
EST 102	Programming In C

Question Bank

Subject: VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS

	Module 1				
SI. No	Questions	Marks	KU/KTU		
1	A particle moves along a circular helix in 3-space so that its position vector at any time 't' is $r(t) = (4\cos\pi t)\vec{i} + (4\sin\pi t)\vec{j} + t\vec{k}$. Find the displacement of the particle during the interval $1 \le t \le 5$.	7	KTU Feb-2017		
2	If $f(x, y, z) = x^2i - 3j + yz^2k$ find div F	2	KTU Apr-2018		
3	Find the work done by the force field $F = xy i + yz j + zx k$ on a particle that moves along the curve C: $x = t, y = t^2, z = t^3, 0 \le t \le 1$	3	KTU Apr-2018 & Dec-2017		
4	Find the divergence and curl of the vector field $f(x, y, z) = yz\vec{i} + xy^2\vec{j} + yz^2\vec{k}$	2	KTU Dec-2017		
5	Evaluate $\int_{c} (3x^2 + y^2) dx + 2xy dy$ along the circular arc C given by $x = cost$, $y = sint$ for $0 \le t \le \frac{\pi}{2}$	3	KTU Dec-2017		
6	Show that the integral $\int_{1,1}^{(3,3)} (e^x logy - \frac{e^y}{x}) dx + (\frac{e^x}{y} - e^y logx) dy$ Where x and y are positive, is independent of path and find its value.	5	KTU Dec-20117		
7	If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $r = \vec{r} $, then show that $\nabla f(r) = \frac{f^{\dagger}(r)}{r}\vec{r}$.	5	KTU Dec-2017		
8	Prove that the force field $F = e^{y}i + x e^{y}j$ is conservative in the entire xy- plane	7	KTU Model question		
9	Find the work done by the Force field $F(x, y, z) = xy\vec{i} + yz\vec{j} + xz\vec{k}$ along C where C is the curve $r(t) = t\vec{i} + t^2\vec{j} + t^3\vec{k}$	7	KTU Model Question		
10	Show that $f(x, y) = (cosy + ycosx)i^{2} + (sinx - xsiny)j^{2}$ is a conservative vector field. Hence find the scalar potential for it.	5	KTU Dec-2017		
11	Find the directional derivative of $f(x, y) = x^2 = 3xy + y^2$	3	KTU-June 2022		
	at the point P(2,1) in the direction of $\vec{a} = \frac{1}{3}\vec{i} + \frac{2}{3}\vec{j}$				
12	Evaluate $\int 3xy dy$ over the line segment C joining (0,0) and (1,2)	3	KTU-June 2022		
		1			

13	a)Find the parametric equation of the tangent to the curve $\vec{r}(t) = 2\cos\pi t\vec{i} + 2\sin\pi t\vec{j} + 6t\vec{k}$ at $t = \frac{1}{3}$ b) Show that the vector field $\vec{f}(x,y) = 2xy^3\vec{i} + 3y^2x^2\vec{j}$ is conservative and find ϕ such that $\vec{f} = \nabla \phi$. Hence evaluate $\int_{(2,-2)}^{(-2,0)} 2xy^3dx + 3y^2x^2dy$	7	KTU-June 2022
14	a. Find the position and velocity vectors of the particle, given $\vec{a}(t) = (t+1)^{-2}\vec{j} + e^{-2t}\vec{k}, \vec{v}(0) = 3\vec{i} - \vec{j}, \vec{r}(0) = \vec{k}$ b. If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, and let $\vec{F}(r) = f(r)\vec{r}$, then prove that	7	KTU-June 2022
	$div\vec{F} = 3f(r) + \vec{r}f'(\vec{r})$ Module 2		
1	Using Greens theorem, find the work done by the force field $\vec{f}(x, y) = (e^x - y^3)\vec{i} + (\cos y + x^3)\vec{j}$ on a particle that travels once around the unit circle $x^2 + y^2 = 1$ in the counter clockwise direction	5	KTU Apr-2018
2	If σ is any closed surface enclosing a volume V and $F = x\vec{i} + 2y\vec{j} + 3z\vec{k}$, using divergence theorem show that $\iint_{\sigma} F. nds = 6 V$.	3	KTU Apr-2018
3	Evaluate $\int_{c} (x^2 - 3y)dx + 3xdy$, where C is the circle $x^2 + y^2 = 4$	3	KTU Dec-2017
4	Using line integral evaluate the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	2	KTU Dec-2017
5	Using Greens theorem evaluate $\int_{C} (xy + y^2) dx + x^2 dy$, where C is the boundary of the common to the curve $y = x^2$ and $= x$.	5	KTU Apr-2018

6	Using stokes theorem evaluate $\int_{c} f dr$ where $F = xz i + 4x^2y^2j + xy k$, C	5	KTU DEC-2017
	is the rectangle $0 \le x \le 1, 0 \le y \le 3$ in the plane $z = y$.		
7	Determine whether the vector fields are free of sources and sinks, If it is not locate them. (i) $(y + z)i - xz^3j + x^2siny k$ (ii) $xy i - 2xyj + y^2 k$	5	KTU Dec-2017
8	Evaluate the surface integral $\iint_{\sigma} xzds$, where σ is the part of the plane $x + y + z = 1$ that lies in the first octant.	5	KTU Dec-2017
9	Using divergence theorem evaluate $\iint_{S} F.nds$ where $F = (x^2 + y)i + z^2j + (e^y - z)k$ and S is the surface of the rectangular solid bounded by the co-ordinate planes $x = 3$, $y = 1$, $z = 3$	5	KTU Apr-2018
10	Use stokes theorem to evaluate the integral $\int_C F dr$ where $F^* = (x^2 - y^2)i^2 + 2xyj^2$ and C is the rectangle in the <i>xy</i> -plane bounded by the lines $x = 0$, $y = 0$, $x = a$ and $y = b$.	5	KTU Apr-2018
11	Find the circulation of $F = (x - z)i + (y - x)j + (z - xy)k$ using Stokes theorem around the triangle with the vertices A(1,0,0),B(0,1,0) and C(0,0,1).	7	KTU MODEL QUESTION
12	Use divergence theorem to find the out ward flux of the vector field $F = 2xi + 3yj + z^{3}k$ across the unit cube bounded by $x = 0, y = 0, z = 0, x = 1, y = 1, z = 1$	7	KTU MODEL question
13	Determine the sources and sinks of the vector field $\vec{f}(x,y) = x^2\vec{i} + y^2\vec{j} + z^2\vec{k}$	3	KTU-June 2022
14	Use divergence theorem to evaluate $\iint \vec{f} \cdot \vec{n} dS$ where	3	KTU-June 2022
	$\vec{f} = 2x\vec{\imath} + 4y\vec{\jmath} - 3z\vec{k}$ and S is the surface of the sphere		
	$x^2 + y^2 + z^2 = 1$		

4.5		-	
15	a) Use Green's theorem to find the work done by the force field	7	
	$\vec{f}(x,y) = xy\vec{i} + (\frac{x^2}{2} + xy)\vec{j}$ on a particle that starts at (4,0)		KTU-June 2022
	transverse the upper semicircle $x^2 + y^2 = 16$ and returns to the		
	starting point along X axis.		
	b) Find the mass of the lamina that is the portion of the cone		
	$z = \sqrt{x^2 + y^2}$ that lies between the planes $z = 1$ and $z = 3$,	7	
	if the density is $\phi(x, y, z) = x^2 z$.		
16	a) Let σ be the portion of the surface $z = 1 - x^2 - y^2$	7	
	that lies above the XY plane and σ is oriented upwards.		KTU-June
		7	2022
	Find the flex of the vector field $\vec{F}(x, y, z) = x\vec{i} + y\vec{j} + z\vec{k}$ across σ .		
	b) Use Stoke's theorem to evaluate $\oint ec{F}.dec{r}$ over the circle		
	$C: x^2 + y^2 = 1$ where $\vec{F}(x, y, z) = z^2 \vec{i} + 3x \vec{j} - y^3 \vec{k}$ and		
	C is the circle in XY plane with counter clockwise orientation looking		
	down the positive Z axis		
	Module 3		
1	Consider the initial value problem $y'' - x^3y' + 6x = sinx$, y(0) = 3, y'(0) = -1.Can this problem have unique solution in an interval containing zero? Explain	3	KTU JULY-2018
2	Find any three independent solutions of the differential equation $y^{''} - y' = 0$	3	KTU JULY-2018
3	Discuss the existence and uniqueness of solution of initial value problem $\frac{dy}{dx} =$		KTU
	$\frac{y}{\sqrt{x}}, y(1) = 3$	3	JULY-2018
4	Prove that $y_1(x) = e^x$ and $y_2(x) = e^{4x}$ form a fundamental system (basis) for the differential equation $y'' - 5y' + 4y = 0$.Can $5e^x - 2e^{4x}$ be a solution (do not use verification code) of the differential equation ?Explain.	5	KTU JULY-2018
5	Discuss the existence and uniqueness of solution of the initial value problem $\frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$ in the rectangle $ x \le 1$, $ y - 1 \le 1$.	6	KTU JULY-2018
	א ב וא עוני ב ואו		

6	If $y_1(x) = x$ is a solution of $x^2y' + 2xy' - 2y = 0$, find the general solution.	5	KTU JULY-2018
7	Examine whether e^{2x} , e^{3x} are linearly independent solutions of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ in $-\infty < x < \infty$, What is its general solution?	3	KTU MAY-2017
8	Find the particular integral of (D ² +4D+10)y = e ^x sin3x	3	KTU MAY-2017
9	Solve $(D^3 + 8)y = sinx cosx + e^{-2x}$	6	KTU MAY-2017
10	Solve y"+y= sec xby the method of variation of parameters	7	KTU MODEL QUESTION
11	Solve $y'' + 4y' + 4y = x^2 + e^{-x} \cos x$	7	KTU MODEL QUESTION
12	Solve the initial value problem $y''+5y'+6y=0$, $y(0) = 1$ y'(0)=2	3	KTU-June 2022
13	Solve y''-y'=0	3	KTU-June 2022
14	 a) Using the method of undetermined coefficients solve, y''-4y=xe^x b) Using the Method of variation of parameters solve, y''-4y+5y=e^{2x}/sinx 	7 7	KTU-June 2022
15	a)Solve the initial value problem, by method of undetermined coefficients $y'' + 4y = 8x^2$, $y(0) = -3$, $y'(0) = 0$	7	KTU-June 2022
	b) Solve the initial value problem $x^2y'' + 3xy' + y = 0$, y(1) = -3, y'(1) = 1	7	
1	Module 4	7	KTU-Dec
Ŧ	Find the inverse Laplace transform of $\frac{5}{(s^2+1)(s^2+25)}$, using convolution theorem.	/	2018
2	Find the Laplace transform of i) ii) $\cos(\omega t + \theta)$	7	KTU-Dec 2018

3	Solve the initial value problem $y'' - y' - 6y = 0$, $y(0) = 6$, $y'(0) = 13$ using Laplace transforms.	7	KTU-March 2017
4	Solve, by using Laplace Transform: $y''+y=3cos 2t$; (0)=0, $y'(0)=0$.	8	KTU- Apr 2018
5	Find the Inverse Laplace Transform of: (i) $\frac{S-4}{S^2-4}$ (ii) $\frac{4}{S^2-2s-3}$	8	KTU- April 2018
6	Find the Laplace Transform of : (<i>i</i>) $sin3tcos2t$ (<i>ii</i>) $e^{-2t}cos^{2}t$	8	KTU-April 2018
7	Find the inverse Laplace transform of $\frac{1}{(s+\sqrt{2})(s-\sqrt{3})}$	7	KTU- July 2017
8	Solve the initial value problem, using Laplace transforms. $y'' + y' + 9y = 0$, y(0) = 0.16, y'(0) = 0	8	KTU-July 2017
9	Find the Laplace transform of (i) $\sinh t \cos t$ (ii) $(t - 1)^3$	8	KTU-July 2017
10	Find the Laplace transform of i) $cost - tsint$ ii) $4te^{-2t}$	8	Ktu- May 2017
11.	Find the inverse laplace transform of $F(s) = \frac{2(e^{-s} - e^{-3s})}{s^2 - 4}$	7	Model Question KTU
12	Find the Laplace Transform of $(sint + cost)^2$	3	KTU-June 2022
13	Find the inverse Laplace Transform of $\frac{e^{-3s}}{(s+2)^2}$	3	KTU-June 2022
14	 a) Using Laplace Transform solve y''+5y'+6y=e^{-t}, y(0) = 0 y'(0)=1 b) Using convolution theorem find the Inverse Laplace Transform of s²/(s²+a²)(s²+a²) 	7	KTU-June 2022
15	a) Find the inverse Laplace Transform of $\frac{s+8}{(s^2+4s+5)}$	7	KTU-June 2022
	b) Using Laplace Transform solve $y''+16y=4\delta(t-3\pi)$, $y(0) = 2$, $y'(0)=0$	7	
	Module 5	I	
1	Using Fourier cosine integral, show that $\int_0^\infty \frac{\cos\omega x}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x}$, if $x > 0$	7	KTU-Dec 2018
2	Find the Fourier sine transform of $f(x) = \begin{cases} sinx, 0 < x < \pi \\ 0, x > \pi \end{cases}$ Find the Fourier transform of $f(x) = \begin{cases} e^{\kappa x}, x < 0 \\ 0, x > 0 \end{cases}$	8	KTU-Dec 2018
3	Find the Fourier transform of $f(x) = \begin{cases} e^{\kappa x}, x < 0 \\ 0, x > 0 \end{cases}$	7	KTU-Dec 2018

4	$ \bigcup_{x \to \infty} \cos x \omega + \omega \sin x \omega \qquad \qquad$	7	KTU-May
	Use Fourier integral to show that $\int_{0}^{\infty} \frac{\cos x\omega + \omega \sin x\omega}{1 + \omega^{2}} d\omega = \begin{cases} \frac{\pi}{2} \text{ if } x = 0 \\ \pi e^{-x} \text{ if } x > 0 \end{cases}$		2017
5	Represent $f(x) = \begin{cases} x^2, \ 0 < x < 1 \\ 0, \ x > 1 \end{cases}$ as a Fourier cosine integral	8	KTU-May 2017
6	Find the Fourier transform of $f(x) = \begin{cases} 1, & x < 1 \\ 0, & otherwise \end{cases}$	7	KTU-May 2017
7	Express $f(x) = 1, 0 < x < \pi$ $0, x > \pi$, a Fourier sine integral and evaluate $\int_0^\infty \frac{1 - \cos \pi \omega}{\omega} \sin x \omega d\omega$	7	KTU-July 2017
8	Find the Fourier Sine Transform of $(x)=e^{- x }$. Hence evaluate $\int_0^\infty \frac{\omega \sin \omega x}{1+w^2} d\omega$.	8	KTU-April 2018
9	Find the Fourier Cosine Transform of $f(x) = \sin x$; $0 < x < \pi$.	7 (3)	KTU-April 2018, KTU-June 2022
10	Using Fourier integral representation show that $\int_{0}^{\infty} \frac{\sin\omega - \omega \cos\omega}{\omega^{2}} = \frac{\frac{\pi x}{2}}{\frac{\pi}{4}}, if \ 0 < x < 1$ $\begin{cases} \frac{\pi}{4}, & if \ x = 1\\ 0, & if \ x > 1 \end{cases}$	8	KTU-July 2017
11	Does the Fourier sine transform $f(x) = x^{-1}sinx$ for $o < x < \infty$ exist? Justify your answer.	4	Ktu model question
13	Find the Fourier sine transform of e^{-x} (x > 0)	3	KTU-June 2022
14	a) Find the Fourier transformation of $f(x) = \begin{cases} c & y \\ 0 & y \end{cases}$, $y \in x \in U$ $\begin{cases} 0 & y \in x \in U \\ 0 & y \in U \end{cases}$	7	KTU-June 2022
	b))Find the Fourier cosine Integral of $ \begin{array}{c} cosx, if 0 < x < \frac{\pi}{2} \\ f(x) = \begin{cases} cosx, if 0 < x < \frac{\pi}{2} \\ 0, otherwise \end{array} $	7	
15	a) Find the Fourier cosine transformation of $f(x) = \begin{cases} x^2, & if \ 0 < x < 1 \\ 0, & x > 1 \end{cases}$	7	KTU-June 2022
	b))Find the Fourier transform of $f(x) = \begin{cases} a - x , if x < a \\ 0, otherwise \end{cases}$	7	

SUB CODE PHT 100

ENGINEERING PHYSICS - A (2019 SCHEME)

	ENGINEERING PHYSICS -A		
	MODULE 1	Marks	Year
	HARMONIC OSCILLATIONS & WAVES		
1	List any six points to compare electrical oscillator with a mechanical	3	Dec '19
	oscillator.		KTU
2	Distinguish between transverse and longitudinal waves. Give one example	3	Dec '19
	for each.		KTU
3	What is amplitude resonance? Give two examples.	3	Dec '20
			KTU
4	What is the relation between path difference and phase difference in wave	3	Dec '20
	motion?		KTU
5a)	Set up the differential equation for a forced harmonic oscillator and solve	10	Dec '19
	it.		KTU
b)	A transverse wave on a stretched string is described by	4	Dec '19
	$y(x,t)=2sin(20t+0.021x+\pi/6)$ where x and y are in cm and t is in		June
	second. Obtain (1) Amplitude (2) Initial phase (3) speed (4)		2022
	frequency		
6a)	Derive an expression for the fundamental frequency of a transverse wave	10	Dec '19
	in a stretched string. Also state laws transverse vibration.		KTU
b)	A sitar wire is under tension of 40 N and length of the bridge is 80cm. A	4	Dec'19
	10m sample of that wire has mass 1.2g. Find the speed and fundamental		KTU
	frequency of transverse wave on the wire.		
7 a)	Frame the differential equation of a damped harmonic oscillator and	10	Dec '20
	deduce its solution. Compare the time-displacement curve in three cases.		Jan 2021/ June2022
b)	The frequency of a tuning fork is 200Hz. If its quality factor is 8×10^4 ,	4	Dec '20
	find the time after which its energy becomes 1/10th of its initial value.		KTU

8 a)	Derive the differential equation for transverse wave in a stretched string	10	Dec '20
	and hence obtain the expression for fundamental frequency.		June2022
•		4	D (20
b)	Calculate the fundamental frequency of a string of 1 m long & mass 2g	4	Dec '20
	when stretched by a weight of 4 kg.		KTU
9 a)	Write down the differential equation of a forced harmonic oscillator and	10	Jan '21
	obtain its solution. Derive the expressions for amplitude and phase		KTU
	difference.		
b)	A transverse wave on a stretched string is described byy(x,t)=5	4	Jan '21
	sin(25t+0.016x+n/2) where x and y are in cm and t is in second. Obtain (1)		KTU
	Speed (2) Amplitude (3)Frequency and (4) Initial phase of the wave		
10	A piece of wire 60 cm long and mass 1.2 g. is stretched by a load of 3 kg.	4	Jan '21
	Find the frequency of the second harmonic.		KTU
	MODULE 3		
1	When a medium of $\mu \neq 1$ is introduced in the Newton's ring set up, what	3	Dec '19
	happens to the diameter of interference pattern? Explain it with the help of		KTU
	relevant equation.		
2	Give 3 differences between interference and diffraction	3	Dec '21 KTU
3	Newton's rings are circular but air wedge fringes are straight. Why?	3	Dec 20 KTU
4	Give 3 differences between Fresnel and Fraunhofer classes of diffraction	3	Dec 20
			KTU
5 (a)	With necessary diagram, write the formation of interference pattern in an	10	Dec 21
	air wedge and derive an expression for the diameter of a thin wire.		KTU
(b)	A monochromatic light of wavelength 5893 Å is incident normally on a	4	Dec 21
	soap film of μ = 1.42. What is the least thickness of the film that will		KTU
	appear dark by reflection?		
6	A grating has 6000 lines/cm. Find angular separation between two	4	Dec 21
	wavelengths 577nm and 579 nm in the second order.		KTU/ June 22

7(a)	Derive Cosine law and obtain the conditions of brightness and darkness	10	Dec 20
	for a thin film in reflected system.		KTU
(b)	In Newton's ring arrangement using a light of wavelength 546 nm, the	4	Dec 19
	radius of the n^{th} and $(n+20)^{th}$ dark rings are found to be 0.162cm and		KTU
	0.368cm respectively. Calculate the radius of curvature of the lens.		
8 (a)	How many lines per meter are there in a plane diffraction grating which	4	Dec 20
	gives an angle of diffraction 30° in the second order for light of		KTU
	wavelength 520 nm incident normally on it?		
(b)	Starting from the expression of radius of nth dark ring in Newton's	10	Jan '21
	rings pattern, describe an experiment to determine the refractive		KTU/ June 2022
	index of a transparent liquid.		2022
9	Derive grating equation for a plane transmission grating. Explain	10	Dec 20/Jan
	resolving power and dispersive power of grating with expressions.		21 / June 22 KTU
	MODULE 4		
1	State Heisenberg's Uncertainty principle and write the three uncertainty relations	3	Dec '19 KTU
2	What is meant by quantum mechanical tunneling? Name two electronic	3	Dec '19
	devices based on this phenomenon.		KTU
3 (a)	Derive an expression for energy Eigen values and normalized wave	10	Dec '19
	function for a particle in a box of width L.		KTU
(b)	Calculate the separation between the two lowest energy levels of an	4	Dec '19
	electron in a one-dimensional box of width 4Å in joules.		KTU
	Given me = 9.1 x 10-31 kg; h=6.625 x 10-34 Js		
4 (a)	Write a note on quantum confinement and based on this explain Nano	10	Dec '20
	sheets, Nano wire and quantum dots.		KTU
(b)	Mention any four applications of nanotechnology	4	Dec '19 KTU
5	Starting from the wave equation derive Schrodinger's time dependent	10	Dec 20
	equation and hence deduce Schrodinger's time independent equation		&21/ June 22
6(a)	Explain the optical, electrical and mechanical properties of nanomaterials.	10	Dec 20/
(1-)	Give two medical applications of nanotechnology.	4	June 22
(b)	Explain surface to volume ratio of nanomaterials	4	Dec 20

MODULE 4			
		1	
1	Distinguish between magnetic induction and magnetizing field.	3	Dec '19
			KTU
2	Distinguish between magnetic induction and magnetizing field.	3	Dec '19
			KTU
3	Define magnetic flux density and magnetic field intensity. Give the relation	3	Dec '20
	between them.		KTU
4	Compare displacement current and conduction current	3	Dec '20
			KTU
5a)	State Gauss' law in magnetism, Ampere's circuital law, faraday's laws of	10	Dec '19
	electromagnetic induction and Lenz's law. Give their equations		KTU
b)	A magnetizing field of 1800 A/m produces a magnetic flux of 3 x 10 -5 Wb in	4	Dec '19
	an iron bar of cross – sectional area 0.2 cm^2 . Calculate the permeability.		KTU
6a)	Starting from Maxwell's equations derive the expression for the velocity of	10	Dec '19
	electromagnetic waves in vacuum.		KTU/
			Jan 21 / June 22
b)	State and explain Poynting's theorem.	4	Dec '19
			KTU/
7.)	Distinguish hotungan generatio and formane anotic substances with two	10	June 22
7a)	Distinguish between paramagnetic and ferromagnetic substances with two	10	Dec '20
	examples for each		KTU
b)	Calculate the magnetic susceptibility of a paramagnetic substance at 600 K, if its susceptibility at 200 K is 3.756 x 10-4	4	Dec '20
			KTU
8 a)	Starting from Maxwell's equations show that velocity of electromagnetic waves in free space is $1/(\mu 0 \epsilon 0) 1/2$.	10	Dec '20
	waves in nee space is 1/(µ000) 1/2.		KTU
b)	State Gauss' divergence theorem and Stokes' theorem.	4	Dec '20
			KTU
9 a)	Compare the properties of paramagnetic, diamagnetic and ferromagnetic	10	Jan '21
	materials.		KTU

b)	Find the relative permeability of a ferromagnetic material if a field strength of 200	4	Jan '21
	A/m produces a magnetization of 3100 A/m.		KTU
10 a)	Starting from Maxwell's equations show that electromagnetic waves are existing in free space and find an expression for velocity.	10	Jan '21 KTU/J une 22
b)	Calculate the value of Poynting's vector at the surface of the sun if the power radiated by sun is 3.8×10^{26} Watts and its radius is 7×10^{8} m.	4	Jan '21 KTU
	MODULE 5		
1	Show that superconductors are perfect diamantes	3	Dec '19 KTU
2	Distinguish between step index and graded index fibers.	3	Dec '19 KTU
3	Give a qualitative account of BCS theory.	3	Dec '20 KTU/
4	Explain the working of a Photo diode	3	Dec '20 KTU
5a)	Explain the characteristics of Type I and Type II superconductors with appropriate diagrams and examples	10	Dec '19 KTU
b)	Discuss BCS theory of superconductivity. Give any four applications of superconductivity.	4	Dec '19/ June 22
6a)	Explain construction and working of a solar cell and draw its I-V characteristics. Mention any two applications of solar cells.	7	Dec '19 KTU
b)	The numerical aperture of an optic fiber is 0.295 and refractive index of core is 1.54. Calculate refractive index of cladding and acceptance angle.	7	Dec '19 KTU/ June 22

7a)	Explain Meissner effect and show that superconductors are perfect diamantes. Distinguish between Type I and Type II superconductors with appropriate graphs.	10	Dec 20/ June22
b)	Explain high temperature superconductors with two examples.	4	Dec '20 KTU
8a)	Define numerical aperture and acceptance angle of an optical fiber and derive the expression for numerical aperture of a step index fiber with a neat diagram.	10	Dec '20 KTU/June 22

QUESTION BANK EST 100 ENGINEERING MECHANICS

marks20212State and explain Lami's theorem.3KTU Julymarks2021				
2 State and explain Lami's theorem. 3 KTU July marks 3 A uniform wheel 60 cm diameter weighing 1000 N rests against a rectangular obstacle 15 cm height as shown in fig. Determine the least force required which when acting through the centre of the wheel will just turn the wheel over the corner of the block 5 KTU Dec 201 30 and explain Lami's theorem. 3 KTU Dec 201 4 The system of connected flexible cables shown in Fig.is supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 9 KTU Dec 201 5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 20	1	Define a free body diagram with sketches	3	KTU July
3 A uniform wheel 60 cm diameter weighing 1000 N rests against a rectangular obstacle 15 cm height as shown in fig. Determine the least force required which when acting through the centre of the wheel will just turn the wheel over the corner of the block 5 KTU Dec 201 30 and an acting through the centre of the block and an acting through the centre of the block and an acting through the centre of the block block 4 The system of connected flexible cables shown in Fig.is supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 9 KTU Dec 201 5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 20			marks	
3 A uniform wheel 60 cm diameter weighing 1000 N rests against a rectangular obstacle 15 cm height as shown in fig. Determine the least force required which when acting through the centre of the wheel will just turn the wheel over the corner of the block 5 MTU Dec 201 30 30 9 XTU Dec 201 30 9 15 XTU Dec 201 4 The system of connected flexible cables shown in Fig.is supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 9 XTU Dec 2019 5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig. 9 XTU Dec 20	2	State and explain Lami's theorem.	3	KTU July
 rectangular obstacle 15 cm height as shown in fig. Determine the least force required which when acting through the centre of the wheel will just turn the wheel over the corner of the block 30 cm 4 The system of connected flexible cables shown in Fig.is supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig. 			marks	2021
 Formight control to the high calculation in the protectime intelleast force required which when acting through the centre of the wheel will just turn the wheel over the corner of the block 30 cm 1 15 The system of connected flexible cables shown in Fig.is supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig. 	3	A uniform wheel 60 cm diameter weighing 1000 N rests against a	5	KTU Dec 2019
 least force required which when acting through the centre of the wheel will just turn the wheel over the corner of the block 30 cm 4 The system of connected flexible cables shown in Fig.is 9 marks 4 The system of connected flexible cables shown in Fig.is 9 marks 2019 2019 5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig. 		rectangular obstacle 15 cm height as shown in fig. Determine the	marks	
 wheel will just turn the wheel over the corner of the block 30 cm p 4 The system of connected flexible cables shown in Fig.is supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig. 				
 4 The system of connected flexible cables shown in Fig.is 9 marks 4 The system of connected flexible cables shown in Fig.is 9 marks 4 The system of connected flexible cables shown in Fig.is 9 marks 2019 2019 2019 2019 				
4 The system of connected flexible cables shown in Fig.is 9 marks 9 marks 4 The system of connected flexible cables shown in Fig.is 9 upporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 9 marks 1 1 1 1 1 1 1 1 2019 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1		wheel will just turn the wheel over the corner of the block		
4 The system of connected flexible cables shown in Fig.is 9 marks 9 marks 8 Supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 9 marks 1019 5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig. 9 marks KTU Dec 20				
4 The system of connected flexible cables shown in Fig.is 9 marks 9 marks 8 Supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 9 marks 1019 5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig. 9 marks KTU Dec 20		P P		
4 The system of connected flexible cables shown in Fig.is supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 9 KTU Dec 2019 4 The system of connected flexible cables shown in Fig.is supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 9 KTU Dec 2019 5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 20		so cm		
4 The system of connected flexible cables shown in Fig.is supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 9 KTU Dec 2019 4 The system of connected flexible cables shown in Fig.is supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. 9 KTU Dec 2019 5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 20				
 supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. Image: Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig. 		30 cm		
 supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. Image: Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig. 				
 supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. Image: Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig. 				
 supporting two loads of 550 N and 600 N at points B and D, respectively. Determine the tensions in the various segments of the cable. Image: Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig. 				
 Supporting two roads of 550 fV and 600 fV at points B and D, respectively. Determine the tensions in the various segments of the cable. Image: A for the cable Image: A f	4		-	
the cable.		supporting two loads of 550 N and 600 N at points B and D,	marks	2019
5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . Marks		respectively. Determine the tensions in the various segments of		
5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 201		the cable.		
5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 201				
5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 201		1301		
5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 201				
5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 201		AT BALL		
5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 201		45		
5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 201		550 N		
5 Concurrent forces of 1,3,5,7,9,11 N are applied to the center of a regular hexagon acting towards its vertices as shown in fig . 9 KTU Dec 201				
regular hexagon acting towards its vertices as shown in fig . marks		600 N		
regular hexagon acting towards its vertices as shown in fig . marks				
regular hexagon acting towards its vertices as shown in fig . marks	_			
regular nonagon acting to value no vertices as shown in ing .	5		-	KTU Dec 2019
Determine the magnitude and direction of the resultant.			marks	
		Determine the magnitude and direction of the resultant.		

MODULE 1

	1N 3N 11N 5N		
6	9N7NA rope 9m long is connected at A and B, two points on the same level, 8 m apart. A load of 300 N is suspended from a point C on the rope 3m from A. Calculate load connected to a point D on the rope 2 m from B is necessary to keep portion CD parallel to AB.	5 marks	KTU July 2021
7	The resultant of a system of four forces is 5 KN directed towards right along x direction. Calculate the force P and its direction ϕ P Y 2 KN R=5 KN 200 5 KN 2 KN	9 marks	KTU July 2021
8	Three cylinders are piled in a rectangular ditch as shown in fig. Neglecting friction, determine the reaction between cylinder A and vertical wall $\int \frac{40N}{120} \frac{120}{30N} \frac{120}{300} \frac{100}{300}$	14 marks	KTU July 2021
9	Two identical rollers each of weight 100 N are supported by an inclined plane, making an angle of 30° with the vertical, and a vertical wall. Find the reaction at the points of contact A, B, C. Assume all the surfaces to be smooth	14 marks	KTU Model question paper

	A C B		
10	A string tied to a wall is made to pass over a pulley placed 2m away from it. A weight P is attached to the string such that the string stretches by 2m from the support on the wall to the location of attachment of weight. Determine the force P required to maintain 200 kg body in position for Θ = 30, The diameter of pulley B is negligible.	14 marks	KTU Model question paper
11	Explain Principles of superposition and transmissibility	5 marks	Model question paper
12	State and prove Varignon's Theorem of moments.	6 marks	Model question paper

MODULE II

1	A uniform ladder 4 m long weighs 200 N. It is placed against a wall	14	KTU Dec 2019
	making an angle of 60° with the floor. The coefficient of friction	marks	
	between the wall and the ladder is 0.25 and that between the ground		
	and the ladder is 0.35. The ladder in addition to its own weight, has		
	to support a man of 1000 N at the top at B. Calculate: (i) The		
	horizontal force P to be applied to the ladder at the ground level to		
	prevent slipping.		
	(ii) If the force P is not applied, what should be the minimum		
	inclination of the ladder with the horizontal, so that it does not slip		
	with the man at the top?		
2	Find the force required to move a load of 30N up a rough inclined	7	KTU Dec 2019
	plane, applied parallel to the plane. The inclination of the plane is	marks	
	such that when the same body is kept on a perfectly smooth plane		
	inclined at an angle, a force of 6N applied at an inclination of 30° to		
	the plane keeps the same in equilibrium. Assume coefficient of		
	friction between the rough plane and the load is equal to 0.3.		
3	For the beam with loading shown in Fig., determine the reactions at	7	KTU Dec 2019
	the supports	marks	
	100 KN		
	$ \begin{array}{c} \hline \\ \hline $		

4	Briefly explain the analysis of forces acting on a wedge with a suitable example	3marks	KTU dec 2021
5	Distinguish static and dynamic friction.	3 marks	KTU Model Question Paper
6	Two blocks A & B are resting against a wall and the floor as shown in figure below. Find the value of horizontal force P applied to the lower block that will hold the system in equilibrium. Coefficient of friction are : 0.25 at the floor, 0.3 at the wall and 0.2 between the blocks.	14 marks	KTU Model Question Paper
	A 500 N B C 60 ° 1000N		
7	A beam is hinged at A and roller supported at B. It is acted upon by loads as shown below. Find the reactions at A & B	14 marks	KTU Model Question Paper
	20 KN 10 KN A 2m 2m 2m 2m 2m 2m 2m 4m 4m 4m		
8	A rough inclined plane, rises 1 cm for every 5 cm along the inclined length. Calculate the effort required to drag a body weighing 100 N up the plane, when the effort is applied parallel to the plane ($\mu = 0.25$).		KTU July 2021
9	A beam 6 m long is loaded as shown in fig. Calculate the reaction at A and B 10 kN $1 m$ $4 kNA 2 \text{ m} D 2 \text{ m} C 2 \text{ m}4 kN$ $1 m$ $4 kN$	7 marks	KTU July 2021
10	The uniform ladder is of mass 10Kg and 2m long leaning against a vertical wall. The coefficient of static friction at A(wall) is 0.6 and at B (floor) is 0.4. Determine the smallest angle for which ladder can remain in the equilibrium	7 marks	KTU July 2021
11	Define angle of friction and cone of friction.	3 marks	Model Question

12	Define and explain angle of friction, Angle of repose and derive the	5	Model Question
	relation between both with the help of a figure.	marks	
13	Define couple. State the properties of couple	3	Model Question
		marks	

MODULE III

1	Find the moment of inertia of shaded area about the horizontal and vertical centroidal axis. All dimensions in cm $ \begin{array}{c} 6 \\ 1 \\ 2 \\ 10 \\ 4 \\ 4 \end{array} $	14 Marks	KTU Dec 2019
2	A force P is directed from a point $A(4,1,4)$ meters towards a point B $(-3,4,1)$ meters. Determine the moment of force P about x and y axis	14 Marks	KTU Dec 2019
	if it produces a moment of 1000Nm about z axis		
3	A force $2i+4j-3k$ is applied at the point A(1,1,-2). Find the moment	3	KTU Dec 2019
	of the force about the point (2,-1,2)	marks	
4	Calculate the area moment of inertia of a rectangular cross-section	3	KTU Dec 2019
	of breadth 'b' and depth 'd' about the centroidal horizontal axis	marks	
5	Find the centroid of the shaded area shown	14 marks	KTU July 2021
6	State Pappus Guldinus theorems.	3 marks	KTU July 2021
7	Find the resultant of the force system shown in fig in which P= $280N,Q=260$ N and R= 210 N	14 Marks	KTU July 2021

	P O AM A A A A A A A A A A A A A A A A A		
8	A rectangular hole is made in a triangular section as shown. Find	14	KTU Model
	moment of inertia about the section x-x passing through the CG of the section and perplicit to PC	Marks	Question Paper
	the section and parallel to BC		
	3cm		
	G 3cm		
	z Jem_s		
	10cm		
9	Support A has ball and socket connection. Roller support at B	14	KTU Model
	prevents motion in the - z direction. Corner C is tied to D by	Marks	Question Paper
	a rope. The triangle is weightless. Determine the unknown force components acting at A, B, and C		
	Z		
	400 N 300 N		
	400 N 2m 1m		
	2m		
	5 y		
	B x		
	x F _{DC}		
	A DC		
10	State and explain perpendicular axis theorem	3	KTU Model
	r · · · · · · · · · · · · · · · · · · ·	marks	Question Paper
11	State and explain parallel axis theorem	3	KTU Model
		marks	Question Paper
12	Briefly explain second moment of inertia and area moment of	3	KTU Model
	inertia.	marks	Question Paper

MODULE IV

1	An object of mass 5 kg is projected with a velocity of 20m/s at a	n 14	KTU Dec 2019
	angle of 600 to the horizontal. At the highest point of its path the	e Marks	

projectile explodes and breaks up into two fragments of masses 1kg		
projectile explodes and breaks up into two fragments of masses rkg		
and 4kg. The fragments separate horizontally after explosion. The		
explosion releases internal energy such that KE of the system at the		
highest point is doubled. Calculate the separation distance between		
two fragments when they reach the ground		
A block of mass M1 resting on an inclined plane is connected by a	14	KTU Dec 2019
string and pulleys to another block of mass M2 as shown in Fig.	Marks	
Find the tension in the string and acceleration of the blocks. Assume		
the coefficient of friction between the blocks M1 and the plane to		
_		
Determine the tension in the inextensible string and the acceleration	14	KTU July 2021
of the masses. Consider the pulley as massless and co efficient of	marks	
friction as 0.20.Block A= 200kg and block B=100 Kg.		
• • • • • • • • • • • • • • • • • • • •		KTU July 2021
	marks	
Two cars A and B travelling in same direction get stopped at a traffic signal. When signal turns green ,car A accelerates at 0.75m/s^2 and 1.75 seconds later, car B starts and accelerates at 1.1	9 marks	KTU July 2021
	explosion releases internal energy such that KE of the system at the highest point is doubled. Calculate the separation distance between two fragments when they reach the ground A block of mass M1 resting on an inclined plane is connected by a string and pulleys to another block of mass M2 as shown in Fig. Find the tension in the string and acceleration of the blocks. Assume the coefficient of friction between the blocks M1 and the plane to be 0.2. M1 =1500N, M2 = 1000N. Angle of inclined plane = 45°. Determine the tension in the inextensible string and the acceleration of the masses. Consider the pulley as massless and co efficient of friction as 0.20.Block A= 200kg and block B=100 Kg.	explosion releases internal energy such that KE of the system at the highest point is doubled. Calculate the separation distance between two fragments when they reach the ground A block of mass M1 resting on an inclined plane is connected by a string and pulleys to another block of mass M2 as shown in Fig. Find the tension in the string and acceleration of the blocks. Assume the coefficient of friction between the blocks M1 and the plane to be 0.2. M1 =1500N, M2 = 1000N. Angle of inclined plane = 45°. Image: the tension in the inextensible string and the acceleration of the masses. Consider the pulley as massless and co efficient of friction as 0.20.Block A= 200kg and block B=100 Kg. Image: the tension in the inextensible string and the acceleration of friction as 0.20.Block A= 200kg and block B=100 Kg. A glass ball is dropped on to a smooth horizontal floor from which it bounces to height of 9 m. On the second bounce, it rises to a height of 6m. From what height the ball was dropped and what is the co efficient of restitution between the glass and the floor Two cars A and B travelling in same direction get stopped at a traffic signal. When signal turns green ,car A accelerates at

		-	
6	Differentiate between curvilinear motion and Projectile motion	3	KTU July 2021
		marks	
7	A hadry is projected at an angle such that the having setal	3	KTU Inter 2021
/	A body is projected at an angle such that the horizontal	_	KTU July 2021
	displacement is 3 times that of maximum height. Find the angle of	marks	
	projection		
8	A cricket ball is thrown by a fielder from a height of 2 m at	14	KTU model
	an angle of 300 to the horizontal with an initial velocity of	marks	question paper
	20 m/s ,hits the wickets at a height of 0.5 m from the ground.		
	How far was the fielder from the wicket?		
9	An engine of weight 500 kN pull a train weighing 1500 kN	14	KTU model
	up an incline of 1 in 100. The train starts from rest and	marks	question paper
	moves with constant acceleration against a resistance of 5		
	N/kN. It attains a maximum speed of 36 kmph in 1 km		
	distance. Determine the tension in the coupling between train		
	and engine and the traction force developed by the engine.		
10	Explain D'Alembert's principle	3	KTU Model
		marks	question paper
11	Define the terms a)Projectile b)Trajectory path c)angular	3	KTU Model
	momentum	marks	question paper
12	State and explain work energy principle.	3	KTU Model
		marks	question paper
13	State and explain impulse momentum equation.	3	KTU Model
		marks	question paper

MODULE V

-			
1	A rotor of an electric motor is uniformly accelerated to a speed of	14	KTU Dec 2019
	1800 rpm from rest for 5 seconds and then immediately power is	marks	
	switched off and the motor decelerates uniformly. If the total time		
	elapsed from start to stop is 12.5 second determine the number of		
	revolutions made while (a) acceleration (b) deceleration. Also find		
	the value of deceleration.		
2	A spring stretches by 0.015m when a 1.75kg object is suspended	5	KTU Dec 2019
	from its end. How much mass should be attached to the spring so	marks	
	that its frequency of vibration is 3 Hz		
3	A particle moving with simple harmonic motion has velocities	9	KTU Dec 2019
	8m/s and 4m/s when at the distance of 1m and 2m from the mean	Marks	
	position. Determmine (a) amplitude (b) period (c) maximum		
	velocity, and (d) maximum acceleration of the particle.		
4	A Circular disc of radius $r=30$ cm and weight $W=145$ N is free to	14	KTU July 2021
	rotate about its geometric axis. A flexible cord carrying a weight	marks	
	of Q=45N is wound around the circumference of the disc as shown		
	in fig. If the weight Qis released from rest, find a) the time t		

	required fot it to fall through the height h= 300cm, b) with what		
	velocity v will it strike the floor		
	« (minin)		
_		5	
5	A 50N weight is suspended from a spring of constant $K=8$ N/cm.	5	KTU July 2021
	Neglecting the mass of spring, find the period for small amplitudes of vertical oscillations	marks	
6	A particle performing simple harmonic motion . When it is at	9	KTU July 2021
	distances of 10.0 cm and 20.0cm from the mean position, its	marks	
	velocities are 1.2 m/s and 0.8 m/s respectively. Find a) amplitude		
	of ocillations b) time period of oscillation c) maximum velocity		
	and d)its maximum acceleration		
7	A motor car is uniformly accelerated from 40 kmph to 50kmph	3	KTU July 2021
	over a distance of 300 m. If the wheels are 1 m diameter find the	marks	
0	angular acceleration of wheels	14	WTU Madal
8	A cylindrical disc, 50 cm diameter and 10 cm thickness having mass of 10 kg, is in contact with a horizontal conveyor	narks	KTU Model Question Paper
	belt running at uniform speeds of 5 m/s. Assuming there is	marks	Question 1 aper
	no slip at points of contact determine (i) angular velocity of		
	disc (ii) Angular acceleration of disc if velocity of conveyor		
	changes to 8 m/s in 10 seconds. Also compute the moment		
	acting about the axis of the disc in both cases.		
9	A wheel rotating about fixed axis at 20 rpm is uniformly	14	KTU Model
	accelerated for 70 seconds during which time it makes 50	marks	Question Paper
	revolutions. Find the (i) angular velocity at the end of this		
	interval and (ii) time required for the velocity to reach 100		
	revolutions per minute		
10	Compare damped and undamped free vibrations	3	KTU Model
		marks	Question Paper
11	What is a spring-mass system? Explain with figure.	3	KTU Model
10		marks	Question Paper KTU Model
12	Dating Vtittingga of anning		K LL IVIOOEL
1	Define Stiffness of spring	-	
12		marks	Question Paper
13	Define Stiffness of spring Define Stiffness of spring	-	

BASICS OF ELECTRONICS ENGINEERING (EST 130 PART-2)

BASICS OF ELECTRONICS ENGINEERING (EST 130 PART-2)

QUESTION BANK

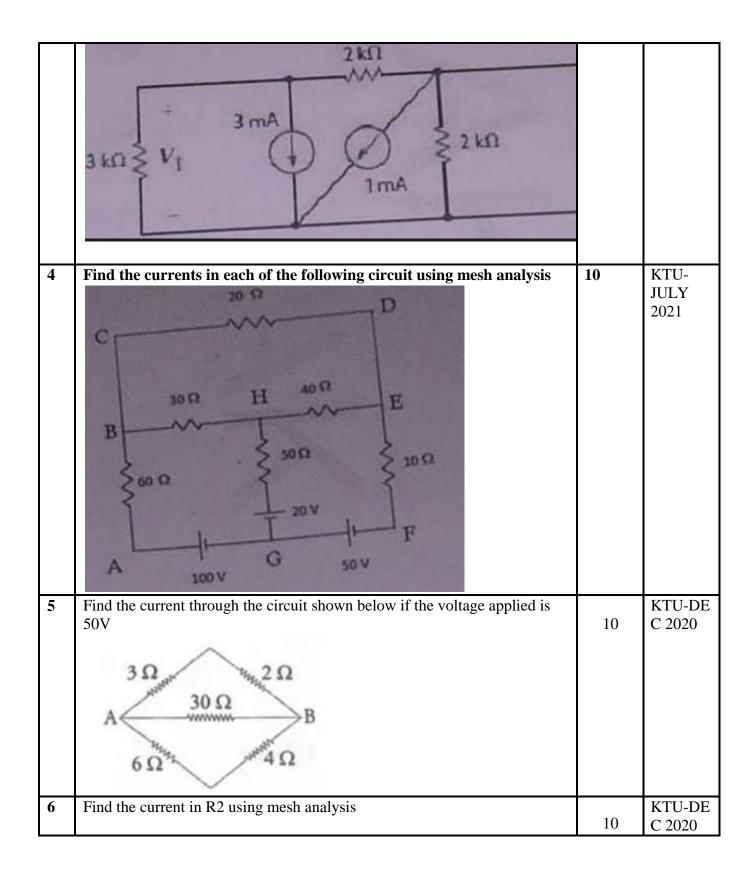
Qn. No	MODULE – 4	Mark s	Year
1	Draw the symbol of the resistor and explain any three specifications.	4 ₅	KTU JUN 2022 KTU DEC 2020
2	For an NPN Transistor, $\alpha = 0.98$, IB =100 μ A, Find IE and IC.	4	KTU JUN 2022
3	a) Explain with necessary diagrams, the principle of operation of NPN transistorb) Describe the colour coding of a resistor with example.	5 5 ₄	KTU JUN 2022 KTU
			DEC 2020
4	a) Draw the circuit diagram of a common emitter amplifier. b) Explain the input and output characteristics of common emitter configuration with neat diagrams	3 7	KTU JUN 2022
5	Find the capacitance values for the following codes (i) 2n2 (ii) 104K.	4	KTU DEC 2021
6	What do you mean by majority and minority carriers in a semiconductor	4	KTU DEC 2021
7	a) Explain the formation of potential barrier in a P-N junction diode.b) Draw and explain the VI characteristics of a PN junction diode under forward and reverse bias	54 ₅ 56 ₅	KTU DEC 2021 KTU DEC 2019 MODEL KTU KTU DEC 2021 KTU JUL 2021 MODEL MODEL

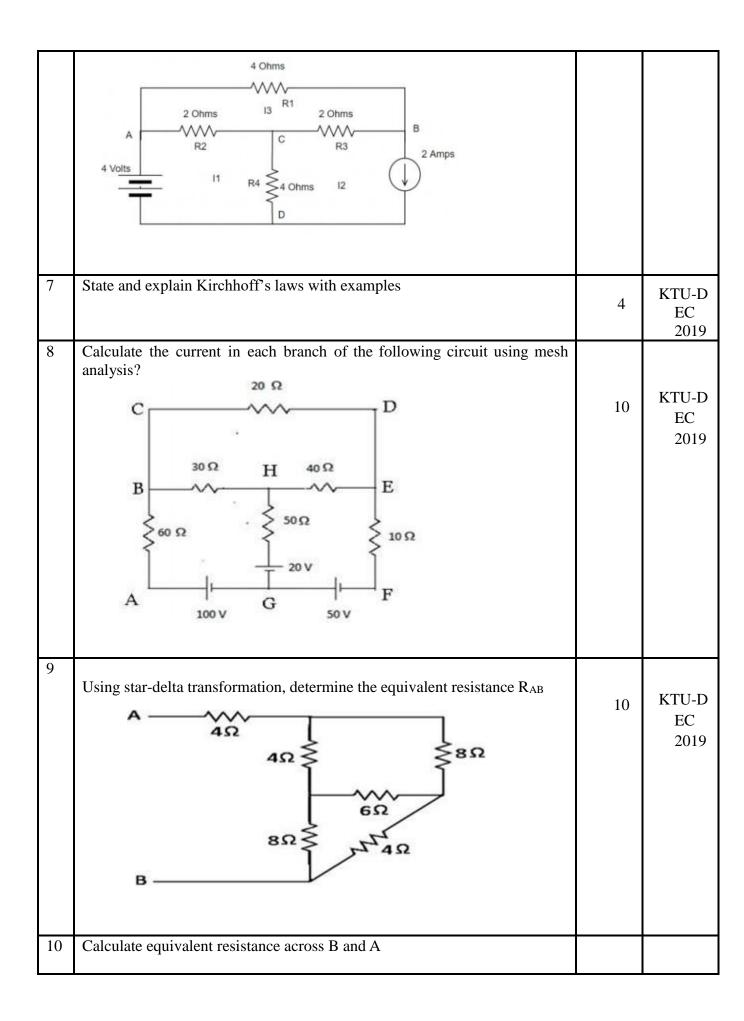
			1
8	a) Explain the working of an NPN transistor mentioning all current.b) The dc current gain of a transistor in common emitter configuration is 100. Find its dc current gain in common base configuration.	•	KTU DEC 2021 MODEL KTU DEC 2021
9	In a 4 band resistor the last colour in the colour band is gold. If the upper range of resistance is 3.465Ω find its colour code.	4	KTU JUL 2021
10	Differentiate between Avalanche breakdown and Zener breakdown?	4	KTU JUL 2021
11	What are the different types of inductors? Give two typical applications of inductor	5	KTU JUL 2021
12	Derive the relation between common base current gain and common emitter current gain,	4	KTU JUL 2021
13	Sketch the output characteristic of a transistor and explain different regions of operation.	6	KTU JUL 2021
14	Distinguish between active and passive electronic components with examples for each	4	KTU DEC 2020
15	Explain Avalanche breakdown?	4	KTU DEC 2020 MODEL
16	What do you understand by depletion region?	5	KTU DEC 2020
17	Explain the VI characteristics of a diode with relevant sketches.	6	KTU DEC 2020
18	What are the different types of capacitors? Give any two applications of capacitors.	4	KTU DEC 2019
19	Describe the forward characteristics of a diode?	4	KTU DEC 2019
20	Explain the working of an NPN transistor. Describe with suitable sketches the input-output characteristics of an NPN transistor.	10	KTU DEC 2019
21	What do you understand by Avalanche breakdown? Draw and explain the reverse V-I characteristics of a diode.	6	KTU DEC 2019
22	What are passive components? Mention at least three components with symbol.	4	KTU DEC 2019

23	Give the specifications of a resistor. The color bands marked on a resistor are Blue, Grey, Yellow and Gold. What are the minimum and maximum resistance values expected from that resistance?		KTU MODEL
24	Explain the Different types of Variable resistors? Mention their applications.	5	KTU DEC 2018
25	Write down the color code for a given resistor of 47-Kilo-ohms with a tolerance of 10%.	4	KTU DEC 2018
26	Write the significance of specifying tolerance value of a component. A ceramic capacitor has got the following code marked on its surface. Identify the capacitance value. (i) 103J (ii) 2n2	5	KTU DEC 2017

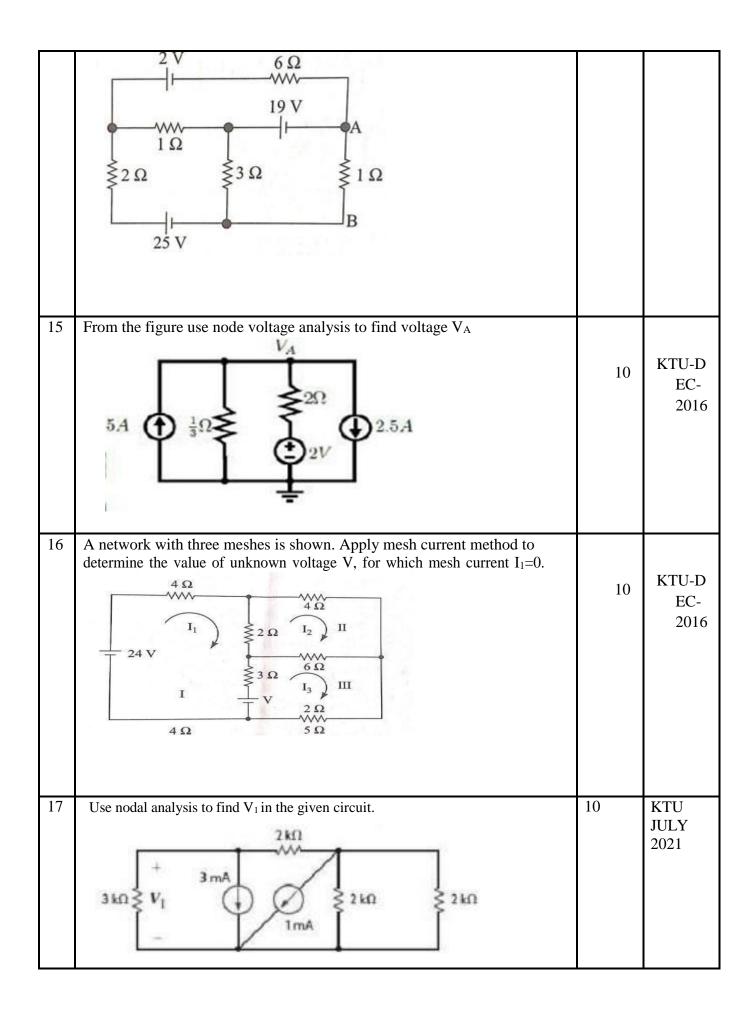
Qn. No	MODULE – 5	Mark s	Year	
1	Explain the action of shunt capacitor filter.	4	KTU JUN 2022	
2	Explain the working principle of Zener voltage regulator.	4 6 5	KTU JUN 2022 KTU JUL 2021 KTU DEC 2019 KTU DEC 2018	
3	Describe the components of a DC power supply using a neat block diagram.	10 5 5	KTU JUN 2022 KTU DEC 2021 KTU DEC 2017	
4	Explain the working of RC coupled amplifier with circuit diagram and relevant waveforms. Also explain the frequency response of RC coupled amplifier.		KTU JUN 2022 KTU JUL 2021 MODEL	
5	Draw and explain the block diagram of a public address system.	4	KTU DEC 2021 KTU JUL 2021 KTU DEC 2019	
6	Narrate the working of a capacitor filter.	4	KTU DEC	

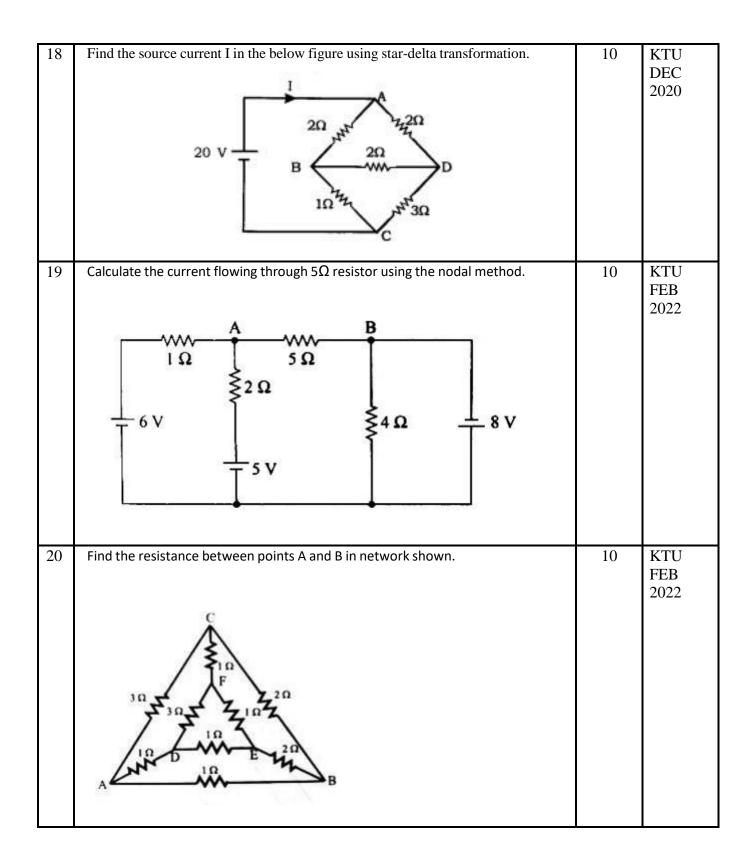
		6	2021 KTU DEC 2019
7	Explain the working of a full wave bridge rectifier.	5 4 7	KTU DEC 2021 KTU JUL 2021 KTU DEC 2019 KTU DEC 2018
8	a) Sketch the frequency response of a transistor amplifier and comment on the shape of the curveb) What is the role of emitter resistor in an RC coupled amplifier?	7 3	KTU DEC 2021
9	Give reasons for decrease in transistor amplifier gain at low frequencies and high frequencies	4	KTU JUL 2021 MODEL
10	Write a note on potential divider biasing	4	KTU DEC 2020
11	Describe gain and bandwidth of an RC coupled amplifier	4	KTU DEC 2020
12	Explain the working of a full wave bridge rectifier with capacitor filter.	7	KTU DEC 2020
13	With a neat sketch explain the block diagram of an instrumentation system	3 6	KTU DEC 2020 MODEL
14	Define line regulation and load regulation	4	KTU DEC 2020
15	Draw the circuit diagram of a CE amplifier and discuss the role of each component used in it.	6	KTU DEC 2020
16	What is the need of biasing? Draw the potential divider biasing circuit?	4	KTU DEC 2019
17	Discuss the role of coupling and bypass capacitors in a single stage RC coupled amplifier.	4	MODEL


Qn.	MODULE – 6	Mark	Year
No		S	


1	Differentiate between amplitude modulation (AM) and frequency modulation (FM).	4 3 5	KTU JUN 2022 KTU DEC 2020 KTU DEC 2019 MODEL
2	a) Explain the concept of cells in cellular communication. b) Draw the block diagram of GSM and explain the principle of operation.	3 4 5 7 7 7 5	KTU JUN 2022 KTU DEC 2019 MODEL KTU KTU JUN 2022 KTU DEC 2019 KTU DEC 2020 MODEL MODEL MODEL
3	a) Describe the principle and working of an antenna. b) What is frequency reuse? Explain with a diagram.	6 3 4 4	KTU JUN 2022 KTU DEC 2020 KTU DEC 2019 MODEL KTU JUN 2022
4	Write the frequency range and typical applications of VHF and UHF frequency bands	4	KTU JUN 2022
5	a) State the merits and demerits of Amplitude Modulation. b) Sketch the block diagram of a superheterodyne receiver and explain its working.	4 5 6	KTU JUN 2022 KTU DEC 2019 MODEL
6	Explain the relevance of Intermediate Frequency in a superheterodyne receiver	4	KTU JUL 2021
7	Draw the frequency spectrum of an amplitude modulated (AM) wave. Given that modulating signal is of frequency fm and amplitude Vm and carrier is of frequency fc and amplitude Vc. Take modulation index as m. What is the bandwidth requirement of this AM wave?	5	KTU JUL 2021
8	With a neat sketch explain AM super heterodyne receiver	5	KTU JUL 2021
9	Explain the concept of cells and frequency reuse in cellular communication	5	KTU JUL 2021 KTU DEC 2020

10	Write the expression for an AM wave and comment on the bandwidth requirement and modulation index.	5	KTU DEC 2020
11	What are the merits of AM compared to FM. The carrier amplitude of a given AM wave is 5V and the message signal amplitude is 3V. Find the modulationindex.	5 5	KTUDEC 2019
12	Draw and explain functional block diagram of cellular communication system.	10	KTUDEC 2018
13	Write the principle of frequency modulation and list the advantages of FM over AM.	5	KTUDEC 2017


BASICS OF ELECTRICAL ENGINEERING (EST130 PART-1)


	MODULE 1				
Sl No		Marks	KTU, Year		
1	Use nodal analysis to find voltages Va, Vb,Vc and Vd $ \begin{array}{c} 20 \Omega \\ + V_{e} - \\ 5 \Omega \\ + V_{e} - \\ 10 \Omega \\ + V_{a} + + \\ 10 \Lambda \\ + V_{a} - 5 \Omega \\ + \\ 10 \Lambda \\ + \\ 10 \Lambda \\ + \\ 5 \Omega \\ + \\ 10 \Lambda \\ +$	10	KTU- DEC 2021		
2	Find the equivalent resistance between the terminals X and Y	10	KTU- DEC 2021		
3	Use nodal analysis to find V1 in the given circuit	10	KTU- JULY 2021		

		4	1
	$\begin{array}{c} A \\ \end{array}$	4	KTU MAY
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \end{array} $		2016
11	A resistor of 5Ω is connected in parallel with a resistor of R1 Ω . This combination is connected in series with an unknown resistor of R2 Ω and the complete circuit is then connected to 50 V dc supply. Calculate the values of R1 and R2, if the power dissipated by the unknown resistor R1 is 150W with 5A passing through it.	4	KTU MAY 2017
12	Find mesh currents in the figure shown by mesh analysis		
	10 ohm 10 ohm 10 ohm 10 ohm 10 ohm 10 ohm 10 ohm 10 ohm 10 ohm 10 ohm	10	KTU MAY 2017
13	Find current in 100 ohm resistor using node analysis		
	$\begin{array}{c} 20 \text{ ohm} \\ & \sqrt{1} \\ & 30 \text{ ohm} \\ & \sqrt{2} \\ & $	10	KTU-D EC- 2018
	+ T 40 V T		
14	By applying Kirchhoff's laws calculate current flowing through the 6Ω resistor in the network shown		
		10	KTU-D EC-

21	State and explain Kirchhoff's laws.	4	KTU FEB 2022

	MODULE 2		
	Questions	Marks	KTU, Year
1	A coil of 180 turns is linked with a flux of 0.03 Wb when carrying a current of 10A. Calculate the inductance of the coil. If the current is uniformly reversed in 0.04 sec, calculate the emf induced in the coil.	4	KTU DEC 2021
2	An alternating current is represented by i(t)=14.14 sin (377t). Find (i)rms value (ii) frequency (iii)time period and (iv)instantaneous value of the current at t=3ms.	4	KTU- DEC 2021
3	An iron ring has a cross section area of 3 cm2 and a mean diameter of 25 cm. An cut across the section of the ring. The ring is wound with a coil of 200 turns through which a current of 3A is passed. If the total magnetic mWb, find the relative permeability of iron, assuming no magnetic leakage	10	KTU- DEC 2021
4	The instantaneous value of an alternating voltage is given by y v=110 sin 314t Find a) the angular velocity, frequency, and time period of b) Differentiate between statically and dynamically induced emfs.	10	KTU- DEC 2021
6	Define the terms i) mmf ii) magnetic field strength iii) magnetic flux and iv) magnetic flux density	4	KTU-D EC 2019
7	State and explain i) Faraday's laws and ii) Lenz's law.	4	KTU-DE C 2019
8	An alternating current varying sinusoidally with a frequency of 50Hz has an rms value of 20A. i) Write down the equation for the instantaneous current ii) Find the instantaneous value of current at 0.0025s. iii) Find the instantaneous value of current 0.125s after passing through a positive maximum value iv) At what time, measured from a positive maximum value, will the instantaneous current be 14.14 A?	10	KTU-D EC 2019

9	Determine the average and rms values of the triangular voltage wave having maximum value Em volt	10	KTU-DE C 2019
10	Compare Electric and Magnetic Circuit	4	KTU-D EC 2018
11	Calculate the flux produced in the air gap in the magnetic circuit shown in figure which is excited by the MMF of two windings. The mean length of the flux path is 40 cm. The permeability of iron is 2000. The uniform cross sectional area is 10 cm ² $\int_{I_1}^{I_2} \int_{I_2}^{I_2} \int_$	10	KTU-D EC 2018
12	Draw the circuit of a series parallel magnetic circuit. Show its electrical equivalent	4	KTU DEC 2016
13	A ring shaped electromagnet has an air gap of 6mm and cross sectional area of 12 cm ² . The mean length of the core (excluding air gap) is 60cm. Calculate the mmf required to produce a flux density of 0.4 Wb/m ² in the gap. Take the relative permeability of the material as 400	10	KTU-D EC 2018
14	A steel ring of 25 cm diameter and of circular section 3 cm in diameter has an air gap of 1.5mm length. It is uniformly wound with 1000 turns of wire carrying a current of 2A. Calculate i) Magneto motive force ii) magnetic flux density in air gap iii) magnetic flux iv) relative permeability of steel ring. Assume that iron path takes about 40% of the total mmf.	10	KTU-M AY 2019
15	Determine the RMS, Average and Form Factor of the waveform shown below	10	KTU-D EC 2018

	1(A)		1 1
	10.4		
	5A		
	0 T 2T 3T time(sec)		
16	A conductor of length 0.5m kept at right angles to a uniform magnetic field of flux density 2Wb/m2 moves with a velocity of 75 m/s at an angle of 600 to the field. Calculate the emf induced in the conductor.	4	KTU JULY 2021
17	a) A coil of 50 Ω resistance is placed in a magnetic field of 1mWb. The coil has 50 turns and a galvanometer of 400 Ω resistance is connected in series with it. Find the average induced emf and the resulting current if the coil is moved in 0.1 second from the given field to another field of 0.2mWb.	6	KTU DEC 2020
	b) Define rms value and average value of a time varying waveform.	4	
18	a). The instantaneous value of an alternating voltage is given by	4	KTU
10	$v=110 \sin 314t$.	0	DEC
	Find the angular velocity, frequency, and time period of the voltage.		2021
	b). Differentiate between statically and dynamically induced emfs.	4	
19	An alternating current is given by 14.14Sin377t. Find the (a) rms value of current	6	KTU
	(b) Average value of current (c) frequency (d) form factor (e) peak factor (f)		FEB
	instantaneous value of current when t=3ms.		2022
20	Explain the terms statically induced emf and dynamically induced emf.	4	KTU FEB 2022
21	Two identical coils 1 and 2 are wound on the same magnetic core. Current in coil	7	KTU FED
	1, which is changing at the rate of 600 A/s, induces emf of 12 V in coil 2. Calculate		FEB 2022
	the mutual inductance between the coils. If the self-inductance of each coil is		
	50mH, calculate the coefficient of coupling between coils.		
22	Define a) MMF b) Field Strength c) Flux Density	3	KTU FEB 2022
23	A coil of 200 turns carries a current of 4A. The magnetic flux linkage with the coil is 0.02Wb. Calculate the self-induced emf in the coil.	4	KTU FEB 2022

	MODULE 3		
	Questions	Marks	KTU, Year
1	Derive an expression for the energy stored in an inductor.	4	KTU- DEC 2021
2	Derive the expression for the current in an ac series RLC <i>circuit</i>	10	KTU- DEC 2021
3	A resistance of 10Ω , an inductance of 0.3 H, and a capacitance of 100μ F are connected in series across 230V, 50 Hz single phase power supply. Calculate the impedance, current through te circuit (iii) voltage across R,L &C and(d) power factor of the circuit	10	KTU- DEC 2021
4	A balanced delta connected 3 phase load is fed from a 3 phase, 400 V 50 Hz supply. The line current is 20A and the total power absorbed by the load is 10kW. Calculate (i) the impedance in each branch (ii) the power factor and (iii) the total power consumed if the same impedances are star connected in the network (10)	10	KTU- DEC 2021
5	Explain the advantage of three phase system of power supply compared to single phase system of power supply	4	KTU MAY 2019
6	When an alternating voltage of $(80+j60)$ V is applied to a circuit, the resulting current flow is $(-4+j10)$ A. Find the impedance, power consumed and the phase angle of the circuit.	4	KTU-DE C 2019
7	Two impedances Z1 and Z2 when connected separately across a 220V, 50 Hz supply, consume 300W and 150W at a power factor of 0.4 lagging and 0.7 leading respectively. When the two impedances are connected in series across the same supply, find total power consumed and overall power factor.	10	KTU-DE C 2019
8	A balanced three phase load has per phase impedance of (30+j50) Ω. If the load is connected across 400V, 3 phase supply, find (i) phase current (ii) line current and (iii) power supplied to load when it is connected in (a) star (b) delta	10	KTU-D EC 2019
9	 In a single phase ac circuit consisting of an impedance of 10Ω, the RMS value of applied voltage is 230V. i. Write down the expression for instantaneous voltage ii. If the current lags the applied voltage by 30° write down the expression for instantaneous current Calculate the power consumed in the circuit 	4	KTU MAY 2019

10	A balanced three phase load consists of three coils each having resistance of 4Ω and inductance 0.02H. It is connected to a 415V, 50Hz, 3-phase ac supply. Determine the phase voltage, phase current, power factor and active power when the loads are connected in (i) star (ii) delta	10	KTU MAY 2019
11	A coil of resistance 10 Ω and inductance 0.1 H is connected in series with a 150 μ F capacitor across 200V, 50 Hz supply. Calculate (i) Inductive reactance, Capacitance reactance, impedance, current and power factor. (ii) The voltage across the coil and capacitor respectively.	10	KTU-D EC 2017
12	 i) An alternating voltage of (80 + j60) V is applied to a circuit and the current flowing is (-4 + j10) A. Find (i) the impedance of the circuit, (b) the power consumed and (c) the phase angle. ii) Each phase of a delta connected load has a resistance of 25Ωand an inductanceof0.15 H. The load is connected across a 400 V, 50 Hz, three phase supply. Determine the line current, power factor and power consumed. 	10	KTU-D EC 2017
13	Two impedences, $10 _{-30}$ and $20 _{60}$ are connected in parallel. Evaluate the equivalent impedance. What is the nature (capacitive or inductive) of the equivalent impedence? If a current of $10 _{45}$ is passing through the parallel combination, calculate the voltage across the combination and express it in rectangular form. Evaluate the currents in each of the impedences. Draw the phasor diagram showing this voltage and all three currents i) Define peak factor and form factor. Consider v(t) = $500\cos(100t)$, a sinusoidal voltage. Evaluate the rms value and peak factor of the voltage form.	10	KTU-D EC 2016
14	An alternating voltage is defined as v=100 sin $\alpha 0 < \alpha < \pi v = 0V \pi < \alpha < 2\pi$ What is the RMS value of this voltage	4	KTU-D EC 2017
15	A balanced 3 phase load consists of 3 coils each of resistance 6 Ω and inductive reactance of 8 Ω . Determine the line current and power absorbed when the coils are (i) star connected (ii) delta connected across 400V, 3 phase supply.	10	KTU JULY 2021
16	Derive the relation between line and phase currents in a 3 phase delta connected system	4	KTU DEC 2020
17	 Three inductive coils, each with a resistance of 22 Ω and an inductance of 0.05 H are connected in first in star and then in delta, to a 3 phase 415 V, 50 Hz supply. Calculate for both star and delta connections, (i) phase current and line current and (ii) total power absorbed. 	10	KTU DEC 2020

18	A capacitor having a capacitance of 20μ F is connected in series with a non – inductive resistance of 200Ω across 220V, 50 Hz supply. Calculate the following 1) Impedance 2) Current 3) Power Factor 4) Power drawn from supply.	10	KTU FEB 2022
19	Show that the power consumed by three identical single-phase loads connected in delta is equal to three times the power consumed when the phase loads are connected in star.	10	KTU FEB 2022
20	A delta-connected load of 12Ω resistance and 16 - Ω reactance are connected across a 100V, 50 Hz supply. Find line current, phase current and power factor.	4	KTU FEB 2022

HUN 102 PROFESSIONAL COMMUNICATION

	Module 1			
Sl No	Questions	Marks	KTU,Year	
1	Find the misspelt words from each set of words given here.	4	July 2021 (FN)	
	a) Defendant, defendant, difendent, defandent			
	b) Assumption, assumption, accumption			
	c) Appreciation, appreciation, appreciation			
	d) Superintendent, superantendant, superintendent, superintendent			
2	Write the definition of the compound words of the following.	3	July 2021 (FN)	
	a) Swimming pool			
	b) Paddle boat			
	c) Neck tie			
	d) Black bird			
	e) Foo t print f)Sunset			
3	In each of the following sentences there are two blank spaces. Find out which pair of words from the options can be filled up in the blanks in the sentence in the same sequence to make the sentence meaningfully complete.	5	July 2021 (FN)	
	(i) A committee has been to the transformation of the city into an International Finance Center.a) Constituted, convert b)appointed, oversee			
	c) Convergent, evaluate d)inaugurated, determent			
	(ii) Keeping in mind the to develop the sector the Govt has			
	a) Importance, never b) proposal, forcibly			
	c) objective, wanted d) need, actively			
	(iii) In his speech he vowed to individuals across the world into the a) Represent, spherethe four billion unbanked of financial inclusion. b) Target, area			
	c) bring, realm d) convince, era			
	(iv) Although he puts in of overtime and takes few holidays, he cannot support his family.			
	a) Sufficient, however b) Lot, besides			
		1		

	c) Plenty, still	d) Frequency, yet		
	(v) They have been on incentive implemented at grass root level.	es to these practices are		
	a) Relying, ensurec) advocating, confirm	b) Improving, secure d) debating, necessitate		
4	 Complete the sentence as directed. a) He said, "I shall go as soon as it is Indirect speech) b) He proposed that they should wait Direct speech) c) The guard refused him admittance the sentence using "Admittance 	s possible." (Change into for the award. (Change into . (Rewrite	3	July 2021 (FN)
5	Find the misspelt words from each set of 1) a) acomodate b) accommadate c) acor 2) a) deductible b) deductable c) deductu 3) a) license b) licence c) licens d) lisenc	nmodate d) accommodate ble d) deductabe	3	June 2022
6	Write the definition for the following con a) Wild life b) Son-in- law	npound words.	1	June 2022
7	Write the correct sequence words and fill (First, Next, Then, Finally, First, After the a, I heard a loud boom I tried to use my TV, but it w was happening, I realized I has electricity bill. b. Let me tell you about how terrible last my wallet. I was so upset I almost cried on my favourite shirt. The night got ever	at) , the lights went out. ras dead. I wondered what ad forgotten to pay my , I lost , I spilled a drink n worse.	6	June 2022
8	Find the error in the sentences given belo He drank once again (a)/ as he was (b)/ f		1	June 2022
9	Write down two numerical adjectives an	d use it in a sentence	2	June 2022

10	Rewrite as directed.	2	June
	a) She said: "They had left the place when I arrived"		2022
	(Change into indirect speech.)		
	b) A sound outside woke us all up (Change the voice)		
	Module 2		
Sl No	Questions	Marks	KTU,Year
1	Help your friend by suggesting and explain SQ3R methods and PQRST method to improve his reading skills?	6	July 2021 (FN)
2	What is reading and what are the four kinds of reading styles. When these styles are used?	6	June 2022
	Module 3		
Sl No	Questions	Marks	KTU,Year
1	You are asked to make a presentation on a tough subject to 10th standard school students. Share your strategies to make your presentation interesting and effective?	4	July 2021 (FN)
2a	Point out the differences between debate and group discussion?	2	July 2021 (FN)
2b	How body language could help you in a group discussion. Write down 6 points.	3	July 2021 (FN)
За	Differentiate Group Discussion (GD) and debate	3	June 2022
3b	Explain the etiquettes one must follow in GD?	4	June 2022
4	You need to make a Project presentation as a part of your internal evaluation.	4	June 2022
	What preparation do you need to make for presenting visuals effectively?		
	Module 4		
Sl No	Questions	Marks	KTU,Year
1a	How we can develop effective listening skills?	3	July 2021 (FN)

1b	How active listening plays an important role in communication?	3	July 2021 (FN)
2	What are the advantages and disadvantages of telephonic or video interviews?	5	July 2021 (FN)
3	Differentiate between active and passive listening.	3	June 2022
4	List the barriers in listening	3	June 2022
	Module 5		
Sl No	Questions	Marks	KTU,Year
1	Write a letter to the HR manager of a leading company, requesting permission to do two-weeks internship at his company as a part of your academic curriculum.	6	July 2021 (FN)
2a	What is technical communication?	1	July 2021 (FN)
2b	What are the different types of reports?	2	July 2021 (FN)
3	What is a report? Explain its structure and types.	6	June 2022
4	You are required to apply for a job and submit your details to a firm. In what context you decide to submit a CV or Biodata or Resume. Write your answer explaining the structure of each and focusing on the differences between them.	6	June 2022

Course Code: EST 102

Course Name: Programming in C

	Module I		
SI. No	Questions	Marks	Years
1.	Differentiate between system software and application software	3	July 2021 (AN&FN)
2.	Write an algorithm to find the largest of three numbers	3	July 2021(AN)
3.	Differentiate between compiler and interpreter	3	July 2021(FN)
4.	Write an algorithm to find the sum of digits of a number.	7/8	July 2021(FN) June 2022
5.	Explain bubble sort with an example. Draw a flowchart and write pseudo code to perform bubble sort on an array of numbers.	14	July 2021(FN)
6.	Explain different types of memory used in a computer.	7	July 2021(FN)
7.	Draw a flowchart to find the factorial of a number.	6	July 2021(FN)
8.	With the help of a neat diagram explain the functional units of a computer	8	July 2021(FN)
9.	List five important registers in CPU. Also state the purpose of each register.	6	July 2021(FN) June 2022
10.	Write algorithm and draw flowchart to perform swapping of two numbers	8	July 2021(FN)
11.	What are the functions of ALU and CU?	3	June 2022
12.	Draw a flowchart to find the sum of first N numbers.	3	June 2022
13	Explain linear search with an example. Draw a flowchart and write pseudo code to perform linear search on an array of numbers	14	June 2022
	Module II		
1.	What is the importance of precedence and associativity? Write the table for operator precedence	3	July 2021(FN)
2.	Discuss the differences between break and continue statements in C.	3	July 2021(FN)
3.	Write a C program to find the sum of first and last digit of a number	7	July 2021(FN)
4.	Write a C program to check if a number is present in a given list of numbers. If present, give location of the number otherwise	7	July 2021(FN) June 2022

	insert the number in the list at the end.		
5.	What is type casting? Name the inbuilt typecasting functions available in C language. What is the difference between type casting and type conversion?	7	July 2021(FN)
6.	Explain different data types supported by the C language with their memory requirements.	7	July 2021(FN) June 2022
7.	What is the difference between assignment and equality operators?	3	July 2021(AN)
8.	What is a static variable? When should it be used?	3	July 2021(AN)
9.	Explain arithmetic, logical and bitwise operators with examples.	7	July 2021(AN)
10.	Write a C Program to check if a given number is a strong number or not. A strong number is a number in which the sum of the factorial of the digits is equal to the number itself. Eg:- I 45:1 !+4 !+5 !:I +24+120=1 45	7	July 2021(AN)
11.	Write C program to convert the given decimal number into binary number	7	July 2021(AN)
12.	What do you mean by Formatted Input? Explain in detail the prototype of 'scanf()' function in C including its argument list and return type	7	July 2021(AN)
13.	Differentiate between while and do-while loops using an example.	3	June 2022
14.	Why is the use of goto statements discouraged in C programs?	3	June 2022
15	Explain formatted and Unformatted I/O functions of C language with syntax and example	7	June 2022
16	Write a C program to read a character from the user and check whether it is a vowel or consonant	7	June 2022
	Module III		
1.	Explain any 3 string handling functions using examples	3	July 2021(FN)
2.	Write a C program to find the occurrence of each element in an array.	3	July 2021(FN)
3.	Write a C program to reverse a string without using string handling functions	7	July 2021(FN) June 2022
4.	Write a C program to perform linear search on an array of numbers.	7	July 2021 (FN & AN)
5.	Write a C program to print the number of vowels and consonants in a string.	7	July 2021(FN)

6.	Write a C program to find the transpose of a matrix.	7	July 2021(AN) June 2022
7.	Write a C program to find length of a string without using string handling functions.	3	July 2021(AN)
8	What is an array? Illustrate using an example, how a single dimensional array is initialized	3	July 2021(AN)
9.	Explain any 4 string handling functions in C programming.	7	July 2021(AN) June 2022
10	Write a C program to find second largest element in an array	7	July 2021(AN)
11	Write a C program to check whether a string is palindrome or not without using string handling functions	7	July 2021(AN)
12	Write a C program to compare any two strings using string handling functions	3	June 2022
13	Write a C program to find the largest element in an array	3	June 2022
14	Write a C program to sort an array of numbers using bubble sort	7	June 2022
	Module IV	•	
1.	Define formal parameters and actual parameters. Illustrate with an example.	3	July 2021(FN)
2.	With examples show how: (i) an array is passed as an argument of a function. (ii) individual elements of an array are passed as arguments of a function.	3	July 2021(FN)
3.	What are different storage classes in C? Give examples for each	7	July 2021 (FN & AN) June 2022
4.	Write a C program to find sum and average of an array of integers using user defined functions	7	July 2021(FN)
5.	Write a C program to : (i) Create a structure containing the fields: Name, Price, Quantity, Total Amount. (ii) Use separate functions to read and print the data	7	July 2021(FN) June 2022
6.	What is the purpose of function declaration and function definition and function call? With examples illustrate their syntax	7	July 2021(FN)
7.	Differentiate between structure and union using an example	3	July 2021(AN)
8.	Illustrate the purpose of return statement using an example	3	July 2021(AN)
9.	 Write a C program to: (i) Create a structure with fields: Name, Address, Date of birth. (ii) Read the above details for five students from user and display 	7	July 2021(AN)

	the details		
10.	What is recursion? Write a C program to display Fibonacci series using recursive function	7	July 2021(AN) June 2022
11.	Write a C program to sort N numbers using functions	7	July 2021(AN)
12.	Name the different types of parameter passing. Illustrate each of them with an example	3	June 2022
13.	What are the advantages of modular programming?	3	June 2022
14.	What are the main differences between structures and unions? Which is preferred in what situation? Give examples.	7	June 2022
	Module V		
1.	Explain the different modes of operations performed on a file in C language.	7	July 2021(FN)
2.	Explain how pointers can be passed to functions in C	7	July 2021(FN) June 2022
3.	Write any three/five file handling functions in C.	3/7	July 2021 (FN & AN) June 2022
4.	Differentiate between address operator(&) and indirection(*) operator	3	July 2021(FN)
5.	Explain any 5 file handling functions in C?	7	July 2021(FN)
6.	Write a program in C to copy the contents of one file into another.	7	July 2021(FN)
7.	Differentiate between char name[] and char *name in C	3	July 2021(AN)
8.	Explain the use of fseek0 function	3	July 2021(AN)
9.	Write a C program to reverse a string using pointers	7	July 2021(AN)
10.	Differentiate between array of pointers and pointer to an array	7	July 2021(AN)
11.	Write a C program to count number of lines in a text file	7	July 2021(AN)
12.	Distinguish between text mode and binary mode operation of a file	3	June 2022
13.	What do you mean by a pointer variable? How is it initialized?	3	June 2022
14.	Write a C program to replace vowels in a text file with character 'x'	7	June 2022
15	Write a C program to print the elements of an array in reverse order using pointers	7	June 2022