Course co	de Course Name	L-T-P Credits	Year of Introduction
CS401	COMPUTER GRAPHICS	4-0-0-4	2016
•	jectives : To introduce concepts of graphics input as To discuss line and circle drawing algorith To introduce 2D and 3D transformations as To introduce fundamentals of image procession	nms. and projections.	
Algorithms Windowing Hidden Lin detection –	eepts in Computer Graphics. Input devices Solid area scan-conversion. Polygon g, clipping. 3D Graphics, 3D transform the Elimination Algorithms. Image proces Robert, Sobel, Canny edge detectors. So gorithm – perimeter measurement.	filling. Two dimensio ations. Projections – F ssing – digital image re	nal transformations. Parallel, Perspective. Ppresentation – edge
 i. com ii. anal iii. appl iv. anal v. appl vi. sum 	ts will be able to : pare various graphics devices lyze and implement algorithms for line dra ly geometrical transformation on 2D and 3 lyze and implement algorithms for clippin ly various projection techniques on 3D ob marize visible surface detection methods rpret various concepts and basic operation	BD objects g jects	d polygon filling
Text Books 1. 2. 3. 4.		nputer Graphics, PHI, 2 ttern Recognition and Ir g part) 11, Principles of Interact	nage Analysis, PHI tive Computer
2.	EXAMPLE A Contract of the second seco	e Processing, Analysis,	and Machine Vision,

	Course Plan		
Module	lle Contents		End Sem. Exam Marks
I	Basic concepts in Computer Graphics – Types of Graphic Devices – Interactive Graphic inputs – Raster Scan and Random Scan Displays.	7	15%
II	Line Drawing Algorithm- DDA, Bresenham's algorithm – Circle Generation Algorithms –Mid point circle algorithm, Bresenham's algorithm- Scan Conversion-frame buffers – solid area scan conversion – polygon filling algorithms	8	15%
	FIRST INTERNAL EXAM		
ш	Two dimensional transformations. Homogeneous coordinate systems – matrix formulation and concatenation of transformations. Windowing concepts –Window to Viewport Transformation- Two dimensional clipping-Line clipping – Cohen Sutherland, Midpoint Subdivision algorithm	8	15%
IV	Polygon clipping-Sutherland Hodgeman algorithm, Weiler- Atherton algorithm, Three dimensional object representation- Polygon surfaces, Quadric surfaces – Basic 3D transformations	8	15%
	SECOND INTERNAL EXAM		
V	 Projections – Parallel and perspective projections – vanishing points. Visible surface detection methods– Back face removal- Z-Buffer algorithm, A-buffer algorithm, Depth-sorting method, Scan line algorithm. 	9	20%
VI	Image processing – Introduction - Fundamental steps in image processing – digital image representations – relationship between pixels – gray level histogram –spatial convolution and correlation – edge detection – Robert, Prewitt, Sobel. END SEMESTER EXAM	8	20%

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).
 All the TEN questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* **50%** analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T-P Credits	Year of Introduction
CS403	PROGRAMMING PARADIGMS	3-0-0-3	2016
• To intr	ctives: roduce the basic constructs that underlie all roduce the basics of programming language roduce the organizational framework for lea	e design and impleme	entation
Polymorphisn determinacy; Subroutines a Passing, Exce and Object (features of S	es, and Bindings - Binding Time, Scope Ro n; Control Flow - Expression Evaluation, S Data Types - Type Systems, Type Check nd Control Abstraction - Static and Dynan eption Handling, Co-routines; Functional a Drientation -Encapsulation, Inheritance, S cripting Languages; Concurrency - Three Pun time program Management	Structured and Unstr king, Equality Testin nic Links, Calling So and Logic Language Dynamic Method 1	ructured Flow, Non ng and Assignment equences, Paramete es; Data Abstraction Binding; Innovative
Expected Ou	Run-time program Management.		
i. co ii. an iii. ap iv. an v. ap vi. an vii. co viii. int	will be able to : mpare scope and binding of names in differ alyze control flow structures in different pr praise data types in different programming alyze different control abstraction mechanic praise constructs in functional, logic and se alyze object oriented constructs in different mpare different concurrency constructs terpret the concepts of run- time program m	rogramming languag languages sms cripting languages t programming langu	ges
Text book: 1. Scott M 2009.	M L, Programming Language Pragmatics, 3	3rd Edn., Morgan Ka	ufmann Publishers,
 Ghezz Kenne Learni 	A Watt, Programming Language Design C i C and M. Jazayeri, Programming Languag th C Louden, Programming Languages: Pri ng, 2011.	ge Concepts, 3rd Edn inciples and Practice	, Wiley.1997 , 3rd Edn., Cengage
Impler	T W, M V Zelkowitz, and T. V. Gopal, Pro- mentation, 4th Edn., Pearson Education, 20 Sebesta, Concepts of Programming Language	01 ges, 11th Edn., Pears	on Education, 2015
	Sethi, Programming Languages: Concepts &		

	Course Plan		
Module	Contents	Hours	End Sem. Exam Marks
I	Names, Scopes and Bindings:- Names and Scopes, Binding Time, Scope Rules, Storage Management, Binding of Referencing Environments. Control Flow: - Expression Evaluation, Structured and Unstructured Flow, Sequencing, Selection, Iteration, Recursion, Non-determinacy.	7	15 %
II	Data Types:-Type Systems, Type Checking, Records and Variants, Arrays, Strings, Sets, Pointers and Recursive Types, Lists, Files and Input/Output, Equality Testing and Assignment.	7	15 %
	FIRST INTERNAL EXAM		
ш	Subroutines and Control Abstraction: - Static and Dynamic Links, Calling Sequences, Parameter Passing, Generic Subroutines and Modules, Exception Handling, Co-routines.	7	15 %
IV	Functional and Logic Languages:- Lambda Calculus, Overview of Scheme, Strictness and Lazy Evaluation, Streams and Monads, Higher-Order Functions, Logic Programming in Prolog, Limitations of Logic Programming.	7	15 %
	SECOND INTERNAL EXAM		
V	Data Abstraction and Object Orientation:-Encapsulation, Inheritance, Constructors and Destructors, Aliasing, Overloading, Polymorphism, Dynamic Method Binding, Multiple Inheritance. Innovative features of Scripting Languages:-Scoping rules, String and Pattern Manipulation, Data Types, Object Orientation.	7	20 %
VI	Concurrency:- Threads, Synchronization. Run-time program Management:- Virtual Machines, Late Binding of Machine Code, Reflection, Symbolic Debugging, Performance Analysis.	7	20 %
	END SEMESTER EXAM		

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).
 All the TEN questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* **50%** analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T-P -Credits	Year of Introduction
CS405	COMPUTER SYSTEM ARCHITECTURE	3-0-0-3	2016

Course Objectives:

- To impart a basic understanding of the parallel architecture and its operations
- To introduce the key features of high performance computers

Syllabus:

Basic concepts of parallel computer models, SIMD computers, Multiprocessors and multi-computers, Cache Coherence Protocols, Multicomputers, Pipelining computers and Multithreading.

Expected outcome :

The Students will be able to :

- i. summarize different parallel computer models
- ii. analyze the advanced processor technologies
- iii. interpret memory hierarchy
- iv. compare different multiprocessor system interconnecting mechanisms
- v. interpret the mechanisms for enforcing cache coherence
- vi. analyze different message passing mechanisms
- vii. analyze different pipe lining techniques
- viii. appraise concepts of multithreaded and data flow architectures

Text Book:

• K. Hwang and Naresh Jotwani, Advanced Computer Architecture, Parallelism, Scalability, Programmability, TMH, 2010.

References:

- 1. H P Hayes, Computer Architecture and Organization, McGraw Hill, 1978.
- 2. K. Hwang & Briggs , Computer Architecture and Parallel Processing, McGraw Hill International, 1986
- 3. M J Flynn, Computer Architecture: Pipelined and Parallel Processor Design, Narosa Publishing House, 2012.
- 4. M Sasikumar, D Shikkare and P Raviprakash, Introduction to Parallel Processing, PHI, 2014.
- 5. P M Kogge, The Architecture of Pipelined Computer, McGraw Hill, 1981.
- 6. PVS Rao, Computer System Architecture, PHI, 2009.
- 7. Patterson D. A. and Hennessy J. L., Morgan Kaufmann , Computer Organization and Design: The Hardware/Software Interface, Morgan Kaufmann Pub, 4/e, 2010.

	Course Plan		
Module	Contents	Hours	End Sem. Exam Marks
Ι	Parallel computer models – Evolution of Computer Architecture, System Attributes to performance, Amdahl's law for a fixed workload. Multiprocessors and Multicomputers, Multivector and SIMD computers, Architectural development tracks, Conditions of parallelism.	6	15%
Ш	Processors and memory hierarchy – Advanced processor technology- Design Space of processors, Instruction Set Architectures, CISC Scalar Processors, RISC Scalar Processors, Superscalar and vector processors, Memory hierarchy technology.	8	15%
	FIRST INTERNAL EXAM		
III	Multiprocessors system interconnects - Hierarchical bus systems, Cross bar switch and multiport memory, Multistage and combining networks. Cache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem	7	15%
IV	Message Passing Mechanisms-Message Routing schemes, Flow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques – Linear Pipeline processors and Nonlinear pipeline processors	8	15%
	SECOND INTERNAL EXAM		
V	Instruction pipeline design, Arithmetic pipeline deign - Super Scalar Pipeline Design	8	20%
VI	Multithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and hybrid architecture	8	20%
	END SEMESTER EXAM		

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks: 40
 - *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).

All the TEN questions have to be answered.

- 3. Part B
 - a. Total marks: 18
 - b. *THREE* questions, each having **9 marks**. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I & II**.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks: 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks: 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have maximum THREE subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T-P - Credits	Year Introdu			
CS407	DISTRIBUTED COMPUTING	3-0-0-3	201	6		
Course Of To i and To i des: Syllabus: Introduction System model Distributed Expected O The Studde i. dist ii. iden iii. illus iv. app con v. com env vi. out system	ojectives: ntroduce fundamental principles of distribu- key design issues. mpart knowledge of the distributed compu- ign of distributed system. On to distributed computing, Design issues odels, Inter-process communication, Distril d mutual exclusion , Distributed system des Dutcome ents will be able to : inguish distributed computing paradigm fro- ntify the core concepts of distributed system strate the mechanisms of inter process comm ly appropriate distributed system principles sistency and fault-tolerance in distributed fi npare the concurrency control mechanisms i ironment line the need for mutual exclusion and election terms	ated systems, tech ting models, algo by Distributed Co buted file system ign. om other computes nunication in distributed transless nunication in distributed transless nunication transless	hnical cha prithms an omputing n, Name S ting parad tributed sy nsparency nsactional	llenges ad the Models, Service , igms ystem		
Cor 2. Pra	s: orge Coulouris, Jean Dollimore and Tim Kin ocepts and Design, Fifth Edition , Pearson Ec deep K Sinha, Distributed Operating System l of India	ducation, 2011	-			
1. A S Pea	References: 1. A S Tanenbaum and M V Steen , Distributed Systems: Principles and paradigms, Pearson Education, 2007					
Module	Contents		Hours	End Sem. Exam Marks		
Ι	Evolution of Distributed Computing -Issue a distributed system- Challenges- Minicom Workstation model - Workstation-Se Processor - pool model - Trends in distri	nputer model – erver model– ibuted systems	7	15%		
II	System models: Physical models - Architec Fundamental models	tural models -	6	15%		

	FIRST INTERNAL EXAM			
III	Interprocess communication: characteristics – group communication - Multicast Communication –Remote Procedure call - Network virtualization. Case study : Skype	7	15%	
IV	Distributed file system: File service architecture - Network file system- Andrew file system- Name Service	7	15%	
	SECOND INTERNAL EXAM			
V	Transactional concurrency control:- Transactions, Nested transactions-Locks-Optimistic concurrency control	7	20%	
VI	Distributed mutual exclusion – central server algorithm – ring based algorithm- Maekawa's voting algorithm – Election: Ring -based election algorithm – Bully algorithm	7	20%	
	END SEMESTER EXAM			

Question Paper Pattern

1. There will be FOUR parts in the question paper – A, B, C, D

2. Part A

- a. Total marks: 40
- b. *TEN* questions, each have **4 marks**, covering **all the SIX modules** (*THREE* questions from **modules I & II**; *THREE* questions from **modules III & IV**; *FOUR* questions from **modules V & VI**).

All the TEN questions have to be answered.

3. Part B

- a. Total marks: 18
- b. *THREE* questions, each having **9 marks**. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I & II**.
- c. *Any TWO* questions have to be answered.
- d. Each question can have maximum THREE subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.

- a. Total marks: 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. *Any TWO* questions have to be answered.
- d. Each question can have maximum THREE subparts.
- 6. There will be *AT LEAST* 50% analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T-P Credits	Year Introdu	
CS409	CRYPTOGRAPHY AND NETWORK SECURITY	3-0-0-3	201	6
• To i	jectives: ntroduce fundamental concepts of symmetric an ntroduce fundamental concepts of authenticatior ntroduce network security and web security prot	1.	er models.	
principles- Cryptograph functions- secure Sock Expected		rse Cipher- Princ Iessage authentic Network security	iples of Pu ation codes / - Web Se	blic key s- Hash ecurity -
i. sum ii. iden iii. dem iv. sum v. iden	ts will be able to : marize different classical encryption techniques ntify mathematical concepts for different crypto nonstrate cryptographic algorithms for encryptio marize different authentication and digital signantify security issues in network, transport ropriate security protocols	graphic algorithm n/key exchange ature schemes		outline
1. Beh 2. Will	rouz A. Forouzan, Cryptography and Network Sliam Stallings, Cryptography and Network Secu			
Edn	: chneier , Applied Cryptography, Protocols, Algo , Wiley, 1995. rrlie Kaufman, Radia Perlman, Mike Speciner, 1			C, 2 nd
	Course Plan			
Module	Contents		Hours	End Sem. Exam Marks
Ι	Symmetric Cipher Models- Substitution techni techniques- Rotor machines-Steganography. Sin Cipher principles- The Data Encryption Standar Differential and linear Cryptanalysis. Bloc principles- Block Cipher modes of operations.	nplified DES- Blo rd, Strength of DE	ck S- 7	15 %
II	IDEA: Primitive operations- Key expansions round, Even Round- Inverse keys for decry Structure- Primitive operation- Inverse Ciphe Rounds, Inverse Rounds. Stream Cipher –RC4.	yption. AES: Bas	sic 7	15 %
	FIRST INTERNAL EX	AM		

III	Public key Cryptography: - Principles of Public key Cryptography Systems, Number theory- Fundamental Theorem of arithmetic, Fermat's Theorem, Euler's Theorem, Euler's Totient Function, Extended Euclid's Algorithm, Modular arithmetic. RSA algorithm- Key Management - Diffie-Hellman Key Exchange, Elliptic curve cryptography	7	15 %
IV	Authentication requirements- Authentication functions- Message authentication codes- Hash functions- SHA -1, MD5, Security of Hash functions and MACs- Authentication protocols-Digital signatures-Digital signature standards.	7	15 %
SECOND INTERNAL EXAM			
V	Network security: Electronic Mail Security: Pretty good privacy- S/MIME. IP Security: Architecture- authentication Header- Encapsulating Security payload- Combining Security associations- Key management.	7	20 %
VI	Web Security: Web Security considerations- secure Socket Layer and Transport layer Security- Secure electronic transaction. Firewalls-Packet filters- Application Level Gateway- Encrypted tunnels.	7	20 %
	END CEMECTED EVAM		

END SEMESTER EXAM

- Question Paper Pattern (End semester exam)
- 1. There will be *FOUR* parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks: 40
 - b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI). All questions have to be answered.

3. Part B

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

4. Part C

- a. Total marks: 18
- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Cou	rse Course Name	L-T-P -	Year of
coc	e Course Name	Credits	Introduction
CS4	31 COMPILER DESIGN LAB	0-0-3-1	2016
Pre-re	uisite : CS331 System Software Lab		
	e Objectives:		
٠	To implement the different Phases of compiler.		
٠	To implement and test simple optimization tech	niques.	
•	To give exposure to compiler writing tools.	-	
List of	Exercises/Experiments :		
1.	Design and implement a lexical analyzer for give	ven language using	C and the lexica
	analyzer should ignore redundant spaces, tabs a	nd new lines.	
2.	Implementation of Lexical Analyzer using Lex T	lool	
3.	Generate YACC specification for a few syntactic	categories.	
	a) Program to recognize a valid arithmetic expr /.	ression that uses ope	erator +, – , * and
	b) Program to recognize a valid variable which	starts with a letter	followed by any
	number of letters or digits.		5 .
	c) Implementation of Calculator using LEX and	YACC	
	d) Convert the BNF rules into YACC form a		enerate abstrac
	syntax tree		
4.	Write program to find ϵ – closure of all states of	any given NFA with	ι ε transition.
5.	Write program to convert NFA with ε transition	to NFA without ε t	ransition.
6.	Write program to convert NFA to DFA		
7.	Write program to minimize any given DFA.		
8.	Develop an operator precedence parser for a giv	en language.	
9.	Write program to find Simulate First and Follow	v of any given gram	nar.
10	Construct a recursive descent parser for an expre-	ession.	
11	Construct a Shift Reduce Parser for a given lang	uage.	
12	Write a program to perform loop unrolling.		
13	Write a program to perform constant propagati	on.	
14	Implement Intermediate code generation for sim	nple expressions.	
15	Implement the back end of the compiler which	h takes the three a	ddress code and
	produces the 8086 assembly language instructi	ions that can be ass	embled and ru
	using an 8086 assembler. The target assembly ir	nstructions can be sig	mple move, add
	sub, jump etc.		
Expec	ed Outcome:		
The St	adent will be able to :		
i.	Implement the techniques of Lexical Analysis an	nd Syntax Analysis.	
ii.	Apply the knowledge of Lex & Yacc tools to dev	elop programs.	
iii.	Generate intermediate code.		
iv.	Implement Optimization techniques and generat	e machine level code	<u>د</u>

iv. Implement Optimization techniques and generate machine level code.

Course code	Course Name	L-T-P Credits	Year Introdu	
CS461	COMPUTATIONAL GEOMETRY	3-0-0-3	2010	6
 To To To Syllabus: Geometric Searching, Convex Hu Expected of the Stude i. Devendent ii. Appertian iii. Appertian iii. Perriv iii. Perriv iter 	introduce techniques for designing efficient algorit discuss data structures used for geometric problem introduce combinatorial complexity of geometric p study rigorous algorithmic analysis of geometric p preliminaries, Plane sweep technique, Line se Triangulation, Art Gallery theorem, Linear pro- ills and Verona Diagrams.	ns problems. oroblems. egment intersect ogramming, Arr ric properties, an ms in diversified ssing, pattern re	ion, Point langements of d using app fields like of cognition, c	ocation, of lines, propriate database omputer
Te: 2. Jos 3. Ma <i>Ge</i> Reference: 1. Her The	nco P. Preparata and Michael Ian Shamos, <i>Comp</i> sts and Monographs in Computer Science, Springe eph O'Rourke, <i>Computational Geometry in C</i> . Ca rk. de Berg, Marc. van Kreveld, Mark. Overmars <i>ometry- Algorithms and Applications</i> . Springer- V S: bert Edelsbrunner, <i>Algorithms in Combinatorial</i> coretical Computer Science, Springer Verlag. eph O' Rourke, <i>Art Gallery Theorems</i> . Oxford Pre	er Verlag. ambridge Univers and Otfried Che ferlag 3 rd Edn. <i>Geometry</i> , EAT	sity Press 2 nd cong, <i>Compt</i>	¹ Edn. <i>utational</i>
	Course Plan			
Module	Contents		Hours	End Sem. Exam Marks
Ι	Geometric Preliminaries, DCEL (Doubly Connect structure, Polygon, Planar Straight Line Graph triangle, area of a polygon, Determinant used t point with respect to a directed line. Convex p and point location in convex polygon (inside-outs Plane sweep algorithm, Algorithm for Line se problem using plane sweep technique.	(PSLG) Area of to test position o olygons, propert side test)	fa fa ies 6	15%

П	Point location in PSLG – Slab method, Chain method and complexity analysis. Range Searching – 1D Range search, Kd Trees.	6	15%
	FIRST INTERNAL EXAM		
III	Polygon Triangulation: Regularization of polygons, properties of triangulations –Proofs, triangulation of monotone polygon – algorithm and complexity analysis. Linear Programming – Half plane intersection, Incremental algorithm and Randomized algorithm	8	15%
IV	Art Gallery Theorem, Guarding Art Gallery, Fisk's proof using three colouring.Arrangements of Lines – Duality, Combinatorics of arrangements, Zone Theorem, Algorithm for Constructing arrangements of lines.	6	15%
	SECOND INTERNAL EXAM		
V	Convex Hulls- Convex Hull Algorithms in the Plane -Graham's Scan Algorithm, Jarvi's March, Divide and Conquer Algorithm.	6	20%
VI	Voronoi Diagrams- Properties and applications in the plane. Proofs of properties related to vertices and edges of voronoi diagrams Algorithm for constructing voronoi diagram. Delaunay Triangulation.	8	20%
	END SEMESTER EXAM		

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).

All the TEN questions have to be answered.

3. Part B

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

4. Part C

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T- P- Credit	Year of Introduction
CS463	DIGITAL IMAGE PROCESSING	3-0-0-3	2016

Course Objectives:

- To introduce and discuss the fundamental concepts and applications of Digital Image Processing.
- To discuss various basic operations in Digital Image Processing.
- To know various transform domains

Syllabus:

Introduction on digital image processing fundamentals; Image Transforms; Spatial and frequency domain filtering; Image segmentation; Morphological Image processing; Representation and Description.

Expected Outcome

The Students will be able to :

- i. compare different methods for image acquisition, storage and representation in digital devices and computers
- ii. appreciate role of image transforms in representing, highlighting, and modifying image features
- iii. interpret the mathematical principles in digital image enhancement and apply them in spatial domain and frequency domain
- iv. apply various methods for segmenting image and identifying image components
- v. summarise different reshaping operations on the image and their practical applications
- vi. identify image representation techniques that enable encoding and decoding images

Text Books:

- 1. A K. Jain, Fundamentals of digital image processing, Prentice Hall of India, 1989.
- 2. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing (English) 3rd Edition, Pearson India, 2013.

References:

- 1. Al Bovik, The Essential Guide to Image Processing, Academic Press, 2009.
- 2. Milan Sonka, Vaclav Hlavac and Roger Boyle, Image Processing, Analysis, and Machine Vision, Thomson Learning, 2008.
- 3. S Jayaraman, S Esakkirajan and T Veerakumar, Digital Image Processing, McGraw Hill Education, 2009.

COURSE PLAN

Module	Contents	Hours	End Sem. Exam Marks
Ι	Introduction to Image processing: Fundamental steps in image processing; Components of image processing system; Pixels; coordinate conventions; Imaging Geometry; Spatial Domain; Frequency Domain; sampling and quantization; Basic relationship between pixels; Applications of Image Processing.	6	15%

II	Image transforms and its properties – Unitary transform; Discrete Fourier Transform; Discrete Cosine Transform; Walsh Transform; Hadamard Transform;	7	15%
	FIRST INTERNAL EXAM		
III	 Image Enhancement in spatial domain Basic Gray Level Transformation functions – Image Negatives; Log Transformations; Power-Law Transformations. Piecewise-Linear Transformation Functions: Contrast Stretching; Gray Level Slicing; Bit Plane Slicing; Histogram Processing–Equalization; Specification. Basics of Spatial Filtering – Smoothing: Smoothing Linear Filters; Ordered Statistic Filters; Sharpening: Laplacian; Unsharp Masking and High Boost Filtering. 	8	15%
IV	Image Enhancement in Frequency Domain Basics of Filtering in Frequency Domain, Filters - Smoothing Frequency Domain Filters : Ideal Low Pass Filter; Gaussian Low Pass Filter; Butterworth Low Pass Filter; Sharpening Frequency Domain Filters: Ideal High Pass Filter; Gaussian High Pass Filter; Butterworth High Pass Filter; Homomorphic Filtering.	6	15%
	SECOND INTERNAL EXAM		
V	Image Segmentation: Pixel-Based Approach- Multi-Level Thresholding, Local Thresholding, Threshold Detection Method; Region-Based Approach- Region Growing Based Segmentation, Region Splitting, Region Merging, Split and Merge, Edge Detection - Edge Operators; Line Detection, Corner Detection.	8	20%
VI	Morphological Operations Basics of Set Theory; Dilation and Erosion - Dilation, Erosion; Structuring Element; Opening and Closing; Hit or Miss Transformation. Representation and Description Representation - Boundary, Chain codes, Polygonal approximation approaches, Boundary segments.	7	20%
	END SEMESTER EXAM	I	

- 1. There will be *FOUR* parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).
 All the TEN questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T-P Credits	Year of Introduction
CS465	BIOINFORMATICS	3-0-0-3	2016

Course Objectives:

- To introduce concepts and data representations in bioinformatics
- To introduce fundamentals of Sequence alignment and Gene Recognition
- To discuss predictive methods using DNA and Protein Sequences

Syllabus:

Introduction to bioinformatics and molecular biology: Databases tools and their uses, Data searches and Pairwise Alignments, Multiple Sequence Alignments, Molecular Phylogenetic, Genomics and Gene Recognition, Protein and RNA structure Prediction

Expected Outcome:

The Students will be able to :

- i. interpret the concepts of bioinformatics
- ii. identify different types of biological sequence
- iii. analyse multiple sequences and find conserved regions
- iv. predict RNA and Protein secondary structures
- v. analyse genomic sequences and identify encoded gene regions

References:

- S C Rastogi, N Mendiratta and P Rastogi, "Bioinformatics: Methods and Applications", ISBN: 978-81-203-4785-4, published by PHI Learning Private Limited, New Delhi, 2015.
- 2. D E Krane and M L Raymer, Fundamental Concepts of Bioinformatics, ISBN 978-81-7758-757-9, Pearson Education, 2006.
- 3. Andreas D.Baxevanis, B F Francis Ouellette, "Bioinformatics A Practical Guide to the Analysis of Genes and Proteins", Third Edition, 2005-2006, ISBN: 978-81-265-2192-0, published by John Wiley & Sons INC., U.K.
- 4. Neil C Jones and Pavel A Pevzner, An Introduction to Bioinformatics Algorithms, MIT press, 2004.

	Course Plan					
Module	Contents	Hours	End Sem. Exam Marks			
Ι	Bioinformatics and Computational Biology, Nature & Scope of Bioinformatics. The central dogma of molecular biology and bio-sequences associated with it, RNA classification –coding and non coding RNA- mRNA, tRNA, miRNA and sRNA, RNAi. DNA and RNA structure – Nucleic Acid structure and function, Genetic Code, Genes and Evolution	6	15%			
Π	Importance of databases - Biological databases-primary sequence databases, Composite sequence databases- Secondary databases- nucleic acid sequence databases - Protein sequence data bases - structure databases, Types of databases, Data retrieval tools - Entrez	8	15%			

	FIRST INTERNAL EXAM		
III	Sequence alignment – local/global, pairwise sequence alignment, scoring methods. Needleman and Wunsch algorithm, global and local alignments. Multiple sequence alignment. Scoring matrices: basic concept of a scoring matrix, Matrices for nucleic acid and proteins sequences, PAM and BLOSUM series, principles based on which these matrices are derived. Differences between distance & similarity matrix.	8	20%
IV	Introduction, Advantages, Phylogenetic Trees, Tree topologies, Methods for phylogenetic analysis- Distance Matrix methods, Character based methods. HMM (Hidden Markov Model): Introduction to HMM, Forward algorithm, Viterbi algorithm, applications in Bioinformatics SECOND INTERNAL EXAM	6	15%
V	General introduction to Gene expression in prokaryotes and eukaryotes- Prokaryotic Genomes – Gene structure, GC content, Gene Density, Eukaryotic Genomes- Gene structure, GC content, Gene Density, Gene Expression, Transposition, Gene prediction approaches.	8	20%
VI	 Protein and RNA structure Prediction: Predicting RNA secondary structure - Nussinov Algorithm, Energy minimisation methods - Zuker Algorithm. Amino Acids, Polypeptide Composition, Protein Structures, Algorithm for protein folding, Structure prediction 	6	15%
	END SEMESTER EXAM		I

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI).

All the TEN questions have to be answered.

3. Part B

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18

- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

6

15

Course coo		L-T-P Credits	Year of Introduction
CS467	MACHINELEARNING	8-0-0-3	2016
Course Obj • T	ectives: o introduce the prominent methods for machine learning		
• T	To study the basics of supervised and unsupervised learnin To study the basics of connectionist and other architectures	g	
	to Machine Learning, Learning in Artificial Neural I I, and other Supervised and Unsupervised learning methods		Decision trees,
Expected O			
	s will be able to :	a achacanta	of supervised
i. differ learn	rentiate various learning approaches, and to interpret the	e concepts	of supervised
ii. comp	bare the different dimensionality reduction techniques		
11.	theoretical foundations of decision trees to identify t ifier to label data points	best split a	and Bayesian
	rate the working of classifier models like SVM, Neur	al Networl	ks and identify
class	ifier model for typical machine learning applications		
v. ident HMN	ify the state sequence and evaluate a sequence emission	n probabilit	ty from a given
	rate and apply clustering algorithms and identify its application	ability in re	al life problems
References:		•	-
	stopher M. Bishop, Pattern Recognition and Machine Lear	U 1	•
	m Alpaydın, <i>Introduction to Machine Learning</i> (Adaptive ning), MIT Press, 2004.	Computation	on and Machine
	garet H. Dunham. Data Mining: introductory and Advanced	Topics, Pe	earson, 2006
4. Mitcl	hell. T, Machine Learning, McGraw Hill.		
	zard S. Michalski, Jaime G. Carbonell, and Tom M. Mitche <i>icial Intelligence Approach</i> , Tioga Publishing Company.	ell, Machin	e Learning : An
Artiji	ciai menigence Approach, 110ga ruonsning Company.		
	Course Plan		
Module	Contents	Hou	
			Marks %
	Introduction to Machine Learning, Examples of Mac	hine	

Learning applications - Learning associations, Classification,

Regression, Unsupervised Learning, Reinforcement Learning.

Supervised learning- Input representation, Hypothesis class,

Version space, Vapnik-Chervonenkis (VC) Dimension

Ι

Probably Approximately Learning (PAC), Noise, Learning Multiple classes, Model Selection and Generalization, Dimensionality reduction- Subset selection, Principle Component Analysis	8	15
FIRST INTERNAL EXAM		1
Classification- Cross validation and re-sampling methods- K- fold cross validation, Boot strapping, Measuring classifier performance- Precision, recall, ROC curves. Bayes Theorem, Bayesian classifier, Maximum Likelihood estimation, Density functions, Regression	8	20
Decision Trees- Entropy, Information Gain, Tree construction, ID3, Issues in Decision Tree learning- Avoiding Over-fitting, Reduced Error Pruning, The problem of Missing Attributes, Gain Ratio, Classification by Regression (CART), Neural Networks- The Perceptron, Activation Functions, Training Feed Forward Network by Back Propagation.	6	15
SECOND INTERNAL EXAM		
Kernel Machines- Support Vector Machine- Optimal Separating hyper plane, Soft-margin hyperplane, Kernel trick, Kernel functions. Discrete Markov Processes, Hidden Markov models, Three basic problems of HMMs- Evaluation problem, finding state sequence, Learning model parameters. Combining multiple learners, Ways to achieve diversity, Model combination schemes, Voting, Bagging, Booting	8	20
Unsupervised Learning - Clustering Methods - K-means, Expectation-Maximization Algorithm, Hierarchical Clustering Methods, Density based clustering	6	15
	Multiple classes, Model Selection and Generalization, Dimensionality reduction- Subset selection, Principle Component Analysis FIRST INTERNAL EXAM Classification- Cross validation and re-sampling methods- K- fold cross validation, Boot strapping, Measuring classifier performance- Precision, recall, ROC curves. Bayes Theorem, Bayesian classifier, Maximum Likelihood estimation, Density functions, Regression Decision Trees- Entropy, Information Gain, Tree construction, ID3, Issues in Decision Tree learning- Avoiding Over-fitting, Reduced Error Pruning, The problem of Missing Attributes, Gain Ratio, Classification by Regression (CART), Neural Networks- The Perceptron, Activation Functions, Training Feed Forward Network by Back Propagation. SECOND INTERNAL EXAM Kernel Machines- Support Vector Machine- Optimal Separating hyper plane, Soft-margin hyperplane, Kernel trick, Kernel functions. Discrete Markov Processes, Hidden Markov models, Three basic problems of HMMs- Evaluation problem, finding state sequence, Learning model parameters. Combining multiple learners, Ways to achieve diversity, Model combination schemes, Voting, Bagging, Booting Unsupervised Learning - Clustering Methods - K-means, Expectation-Maximization Algorithm, Hierarchical Clustering	Multiple classes, Model Selection and Generalization, Dimensionality reduction- Subset selection, Principle Component Analysis8FIRST INTERNAL EXAMClassification- Cross validation and re-sampling methods- K- fold cross validation, Boot strapping, Measuring classifier performance- Precision, recall, ROC curves. Bayes Theorem, Bayesian classifier, Maximum Likelihood estimation, Density functions, Regression8Decision Trees- Entropy, Information Gain, Tree construction, ID3, Issues in Decision Tree learning- Avoiding Over-fitting, Reduced Error Pruning, The problem of Missing Attributes, Gain Ratio, Classification by Regression (CART), Neural Networks- The Perceptron, Activation Functions, Training Feed Forward Network by Back Propagation.6Kernel Machines- Support Vector Machine- Optimal Separating hyper plane, Soft-margin hyperplane, Kernel trick, Kernel functions. Discrete Markov Processes, Hidden Markov models, Three basic problems of HMMs- Evaluation problem, finding state sequence, Learning model parameters. Combining multiple learners, Ways to achieve diversity, Model combination schemes, Voting, Bagging, Booting8Unsupervised Learning - Clustering Methods - K-means, Expectation-Maximization Algorithm, Hierarchical Clustering6

END SEMESTER EXAM

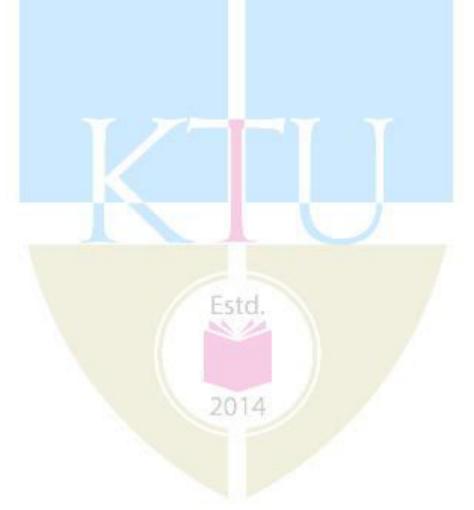
Question Paper Pattern

- 1. There will be *FOUR* parts in the question paper A, B, C, D
- 2. Part A

a. Total marks : 40

```
2014
```

- b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI).
 - All the TEN questions have to be answered.


3. Part B

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. *Any TWO* questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Course o	code	Course Name L-	-T-P Credits		r of uction
CS46	9	COMPUTATIONAL COMPLEXITY	3-0-0-3	20	16
Course C)biect	ives:			
	•	oduce the fundamentals of computational compl	lexity theory.		
		cuss basic concepts such as computational n		tational c	omplexity
		es (e.g., time and space complexity measures), c	-		
		eness notions.	comprenity enus	505, 10 uu	ionney and
	-	liarize the concepts of randomized and approx	imation algorit	hms and d	iscuss the
		complexity classes.	initiation algorit	und e	150455 1110
Syllabus					
•		es, decision problems, time and space complexit	ty, polynomial	time algor	ithms, NP
-		eteness, standard time and space complexity c	• • •	-	
		algorithms, randomized algorithms and complete			
		s, interactive proofs and their relation to approx	•		
Expected		· · · · · · · · · · · · · · · · · · ·			
-		ill be able to :			
i. de	etermi	ne whether a problem is computable, and provide the problem is computable.	rove that some	e problem	s are not
сс	mput	able		-	
ii. ca	itegori	ze problems into appropriate complexity classe	S		
iii. cl	assify	problems based on their computational complete	xity using redu	ctions	
iv. ar	nalyse	optimization problems using the concept of inte	eractive proofs		
v. cl	assify	optimization problems into appropriate approxi	imation comple	exity classe	es
Text Boo	ks:				
		l Sipser, Introduction to the Theory of Co	-		
		ing Company, January 1997, or second editio	on - Thomson (Course Te	chnology,
	005).				
	•	Arora and Boaz Barak, Computational Co	omplexity: A	Modern .	Approach,
		dge University Press,2009			
Referenc				1004	
		s H Papadimitriou, Computational Complexity,		•	
		rrey and D S Johnson, Computers and Intractable	ility: A Guide t	o the Theo	ory of NP-
	-	teness, Freeman, 1979.	TT 1	2000	
		oldreich, Computational Complexity, Cambridg	• • •	ress, 2008	•
4. V	ijay V	azirani, Approximation Algorithms, Springer	-Verlag, 2001		
		Course Plan			
					End
					Sem.
Module		Contents		Hours	Exam
					Marks
	T. 4	J			%
		• •	gorithms and		
Ŧ	-	lexity.	. 		1
Ι	Turi	0	-	5	15%
		ministic and non-deterministic Turing maching	mes. Decision		
	probl	ems		1	

II	 The Halting Problem and Undecidable Languages: Counting and diagonalization. Tape reduction. Universal Turing machine. Undecidability of halting. Reductions. Rice's theorem. Deterministic Complexity Classes: DTIME[t]. Linear Speed-up Theorem. P Time. Polynomial reducibility. Polytime algorithms: 2-satisfiability, 2-colourability. 	8	15%
	FIRST INTERNAL EXAM		
III	NP and NP-completeness: Non-deterministic Turing machines.NTIME[t]. NP. Polynomial time verification. NP-completeness.Cook-Levin Theorem. Polynomial transformations: 3-satisfiability, clique, colourability, Hamilton cycle, partitionproblems. Pseudo-polynomial time. Strong NP-completeness.Knapsack. NP-hardness.	8	15%
IV	Space complexity and hierarchy theorems: DSPACE[s]. Linear Space Compression Theorem. PSPACE, NPSPACE. PSPACE = NPSPACE. PSPACE-completeness. Quantified Boolean Formula problem is PSPACE-complete. L, NL and NL- completeness. NL=coNL. Hierarchy theorems.	8	15%
	SECOND INTERNAL EXAM		
V	Randomized Complexity: The classes BPP, RP, ZPP. Interactive proof systems: IP = PSPACE.	6	20%
VI	Optimization and approximation: Combinatorial optimization problems. Relative error. Bin-packing problem. Polynomial and fully polynomial approximation schemes. Vertex cover, traveling salesman problem, minimum partition.	7	20%
	END SEMESTER EXAM		1

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks: 40
 - b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI).

All the TEN questions have to be answered.

- 3. Part B
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.

4. Part C

a. Total marks : 18

- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

**451 Seminar and Project Preliminary 0-1-4-2 2016 Prerequisite : Nil Course Objectives • To develop skills in doing literature survey, technical presentation and report preparation. • To enable project identification and execution of preliminary works on final semester project	Course code	Course Name	L-T-P - Credits	Year of Introduction
Course Objectives • To develop skills in doing literature survey, technical presentation and report preparation. • To enable project identification and execution of preliminary works on final semester project Course Plan Seminar: Each student shall identify a topic of current relevance in his/her branch of engineerin get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughl prepare own report and present in the class. Project preliminary: dentify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Prese he project preposal before the assessment board (excluding the external expert) and get pproved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) formulation of propertion of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows; i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progr	**451	Seminar and Project Preliminary	0-1-4-2	2016
 To develop skills in doing literature survey, technical presentation and report preparation. To enable project identification and execution of preliminary works on final semester project Course Plan Seminar: Each student shall identify a topic of current relevance in his/her branch of engineerin get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughl orepare own report and present in the class. Project preliminary: dentify suitable project relevant to the branch of study. Form project team (not exceeding for tudents). The students can do the project individually also. Identify a project supervisor. Prese he project proposal before the assessment board (excluding the external expert) and get upproved by the board. The students to be completed: (1) Literature survey (2) Formulation of objectives (1) comulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function of Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to Analyse a current topic of professional interest and present it before an audience Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Somarks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks Somarks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.) 		Prerequisite : N	il	
 To develop skills in doing literature survey, technical presentation and report preparation. To enable project identification and execution of preliminary works on final semester project Course Plan Seminar: Each student shall identify a topic of current relevance in his/her branch of engineerin get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughl orepare own report and present in the class. Project preliminary: dentify suitable project relevant to the branch of study. Form project team (not exceeding for tudents). The students can do the project individually also. Identify a project supervisor. Prese he project proposal before the assessment board (excluding the external expert) and get upproved by the board. The students to be completed: (1) Literature survey (2) Formulation of objectives (1) comulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function of Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to Analyse a current topic of professional interest and present it before an audience Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Somarks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks Somarks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.) 	Course Object	ives		
project Course Plan Seminar: Each student shall identify a topic of current relevance in his/her branch of engineerin get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughl prepare own report and present in the class. Project preliminary: dentify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Prese he project proposal before the assessment board (excluding the external expert) and get upproved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2 formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funct 6) Preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks Noris : 30% & iii. Report : 30%) Project preliminary Project preliminary : 50 marks(Project preliminary : 50 marks(<td>-</td> <td></td> <td>ical presentation and rep</td> <td>port preparation.</td>	-		ical presentation and rep	port preparation.
project Course Plan Seminar: Each student shall identify a topic of current relevance in his/her branch of engineerin get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughl prepare own report and present in the class. Project preliminary: dentify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Prese he project proposal before the assessment board (excluding the external expert) and get upproved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2 formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funct 6) Preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks Noris : 30% & iii. Report : 30%) Project preliminary Project preliminary : 50 marks(Project preliminary : 50 marks(<td>• To enab</td> <td>le project identification and execution of</td> <td>oreliminary works on fi</td> <td>nal semester</td>	• To enab	le project identification and execution of	oreliminary works on fi	nal semester
Seminar: Each student shall identify a topic of current relevance in his/her branch of engineerin get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughl brepare own report and present in the class. Project preliminary: dentify suitable project relevant to the branch of study. Form project team (not exceeding for tudents). The students can do the project individually also. Identify a project supervisor. Prese he project proposal before the assessment board (excluding the external expert) and get upproved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (17 formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Sominar : 50 marks Coistribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	project		F & T & A & A	
<pre>get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughl brepare own report and present in the class. Project preliminary: dentify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Prese he project proposal before the assessment board (excluding the external expert) and get upproved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking func 6) Preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)</pre>	Course Plan 🖉	API ARINI I	CALAM	
brepare own report and present in the class. Project preliminary: dentify suitable project relevant to the branch of study. Form project team (not exceeding for tudents). The students can do the project individually also. Identify a project supervisor. Prese he project proposal before the assessment board (excluding the external expert) and get upproved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (Comulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function (4) Preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks Project preliminary : 50 marks Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	Seminar: Each	student shall identify a topic of current re	elevance in his/her brand	ch of engineering
Project preliminary: dentify suitable project relevant to the branch of study. Form project team (not exceeding for tudents). The students can do the project individually also. Identify a project supervisor. Prese he project proposal before the assessment board (excluding the external expert) and get upproved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function (4) Preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary Project preliminary : 50 marks Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	get approval of	faculty concerned, collect sufficient lite	erature on the topic, stu	udy it thoroughly
dentify suitable project relevant to the branch of study. Form project team (not exceeding for tudents). The students can do the project individually also. Identify a project supervisor. Prese he project proposal before the assessment board (excluding the external expert) and get upproved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function (5) Preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation \$\$ 50 marks Seminar \$\$ 50 marks Project preliminary	prepare own re	port and present in the class.	UICAL	
students). The students can do the project individually also. Identify a project supervisor. Prese he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome . The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)			ITV	
he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funct (6) Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome . The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	•			-
approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function of Preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome . The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)				
The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function (5) Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome . The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)		-	cluding the external e	xpert) and get
 Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function of preliminary report <i>Note:</i> The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to Analyse a current topic of professional interest and present it before an audience Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)				
 6) Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.) 	-	• • • • • •	• • •	. .
Note: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to Analyse a current topic of professional interest and present it before an audience Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)			nulation of work plan ((5) Seeking fund
Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks Progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	• / •			•
The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)			semester by the same	project team.
 i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	-			
 ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)			1	1.
Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	•		-	
Seminar: 50 marks(Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%)Project preliminary: 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	ii. Identify	an engineering problem, analyse it and p	ropose a work plan to se	olve it.
Seminar: 50 marks(Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%)Project preliminary: 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	Evolution			
(Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)		· 50 marks		
questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)			resentation · 40% ii A	hility to answer
Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)				to answer
progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	-	L ,	valuation by the supervi	sor \cdot 40% and
evaluations, mid semester and end semester, are mandatory.)	5 1			
				wo progress
<i>Note:</i> All evaluations are mandatory for course completion and for awarding the final grade.	••••••••••••••••••••••••••••••••			
2014	Note: All eval	uations are mandatory for course completion	on and for awarding the	e final grade.
2014				0
2014				
		2014		