EC401 INFORMATION THEORY & CODING 4-0-0-4 2016 Prerequisite: EC302 Digital Communication	COURS CODE	E COURSE NAME	Ţ	-T-P-C	YEAI	
Prerequisite: EC302 Digital Communication Course objectives: • To introduce the concept of information • To understand the limits of error free representation of information signals and the transmission of such signals over a noisy channel • To design and analyze data compression techniques with varying efficiencies as per requirements • To understand the concept of various theorems proposed by Shannon for efficient data compression and reliable transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free c						
Course objectives: • To introduce the concept of information • To introduce the concept of information • To understand the limits of error free representation of information signals and the transmission of such signals over a noisy channel • To design and analyze data compression techniques with varying efficiencies as per requirements • To understand the concept of various theorems proposed by Shannon for efficient data compression and reliable transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To give idea on different coding techniques for reliable data transmission • To design an optimum decoder for various coding schemes used. Expected outcome: In Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Design an optimum decoder for various coding schemes used. Fext Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005			UDING 6	4-0-0-4	201	10
To introduce the concept of information To understand the limits of error free representation of information signals and the transmission of such signals over a noisy channel To design and analyze data compression techniques with varying efficiencies as per requirements To understand the concept of various theorems proposed by Shannon for efficient data compression and reliable transmission To give idea on different coding techniques for reliable data transmission To design an optimum decoder for various coding schemes used. Syllabus: Concept of amount of information, Entropy, Source coding, Channel Capacity, Shannon's Limit, Rate Distortion Theory, Channel Coding, Linear Block Codes, Cyclic codes, Cryptography, Convolutional Codes, Viterbi Algorithm Sepected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for design an optimum decoder for various coding schemes used. Itex Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. P S Labov, Information Theory and Coding Technical Publications, Pune, 2009 4. Kelbert & Subov, Information theory and Coding the camples, Cambridge University Press, 2013 Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ.2004	-	6				
To understand the limits of error free representation of information signals and the transmission of such signals over a noisy channel To design and analyze data compression techniques with varying efficiencies as per requirements To understand the concept of various theorems proposed by Shannon for efficient data compression and reliable transmission To give idea on different coding techniques for reliable data transmission To give idea on different coding techniques for reliable data transmission To design an optimum decoder for various coding schemes used. Syllabus: Concept of amount of information, Entropy, Source coding, Channel Capacity, Shannon's convolutional Codes, Viterbi Algorithm Sepected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Analyze various coding schemes iii. Design an optimum decoder for various coding schemes used. Text Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information theory and coding by examples, Cambridge University Press, 2013 Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy Noiseless codi						
transmission of such signals over a noisy channel To design and analyze data compression techniques with varying efficiencies as per requirements To understand the concept of various theorems proposed by Shannon for efficient data compression and reliable transmission To give idea on different coding techniques for reliable data transmission To give idea on different coding techniques for reliable data transmission To give idea on different coding techniques for reliable data transmission To design an optimum decoder for various coding schemes used. Syllabus: Concept of amount of information, Entropy, Source coding, Channel Capacity, Shannon's convolutional Codes, Viterbi Algorithm Expected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Analyze various coding schemes Design an optimum decoder for various coding schemes used. Fext Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chidode, Information theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004		-	tation of inform	notion signal	a and the	
To design and analyze data compression techniques with varying efficiencies as per requirements To understand the concept of various theorems proposed by Shannon for efficient data compression and reliable transmission To give idea on different coding techniques for reliable data transmission To design an optimum decoder for various coding schemes used. Syllabus: Concept of amount of information, Entropy, Source coding, Channel Capacity, Shannon's limit, Rate Distortion Theory, Channel Coding, Linear Block Codes, Cyclic codes, Cryptography, Convolutional Codes, Viterbi Algorithm Expected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an optimum decoder for various coding schemes used. Text Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and Coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ.2004 Course Plan fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ.2004 fundamentals and Applications, 2/e, Prentice Hall Inc, Englewood Cliffs, NJ.2004 fundamentals and Applications, 2/e, Prentice Hall Inc, Englewood Cliffs, NJ.2004 fundamentals and Applications, 2/e, Prentice Hall Inc, Englewood Cliffs, NJ.2004 fundamentals and Applications, 2/e, Prentice Hall Inc, Course Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc, Englewood Cliffs, NJ.2004 fundamentals and Applications, 2/e, Prentice		-		nation signal	s and the	
requirements • To understand the concept of various theorems proposed by Shannon for efficient data compression and reliable transmission • To give idea on different coding techniques for reliable data transmission • To design an optimum decoder for various coding schemes used. Syllabus: Concept of amount of information, Entropy, Source coding, Channel Capacity, Shannon's limit, Rate Distortion Theory, Channel Coding, Linear Block Codes, Cyclic codes, Cryptography, Convolutional Codes, Vitebi Algorithm Expected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Analyze various coding schemes iii. Design an optimum decoder for various coding schemes used. Fext Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Module <				ving efficien	cies as ner	
To understand the concept of various theorems proposed by Shannon for efficient data compression and reliable transmission To give idea on different coding techniques for reliable data transmission To design an optimum decoder for various coding schemes used. Syllabus: Concept of amount of information, Entropy, Source coding, Channel Capacity, Shannon's init, Rate Distortion Theory, Channel Coding, Linear Block Codes, Cyclic codes, Cryptography, Convolutional Codes, Viterbi Algorithm Spected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Analyze various coding schemes iii. Design an optimum decoder for various coding schemes used. Text Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ.2004 Course Plan Module Course contents J Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding : Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy Noiseless coding theorem , construction of basic source codes, [iques with the	ying erneren	eres as per	
To give idea on different coding techniques for reliable data transmission To design an optimum decoder for various coding schemes used. Syllabus: Concept of amount of information, Entropy, Source coding, Channel Capacity, Shannon's simit, Rate Distortion Theory, Channel Coding, Linear Block Codes, Cyclic codes, Cryptography, Convolutional Codes, Viterbi Algorithm Expected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Analyze various coding schemes iii. Design an optimum decoder for various coding schemes used. Fext Books: 1. Ps Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ.2004 Course Plan Module Course contents Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy Noiseless coding theorem , construction of basic source codes,	• To	understand the concept of various theory	ems proposed	by Shanno	n for effic	cient data
To design an optimum decoder for various coding schemes used. Syllabus: Concept of amount of information, Entropy, Source coding, Channel Capacity, Shannon's Limit, Rate Distortion Theory, Channel Coding, Linear Block Codes, Cyclic codes, Cryptography, Convolutional Codes, Viterbi Algorithm Sepected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Analyze various coding schemes iii. Design an optimum decoder for various coding schemes used. Text Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy			r reliable data	rangmission		
Syllabus: Concept of amount of information, Entropy, Source coding, Channel Capacity, Shannon's simit, Rate Distortion Theory, Channel Coding, Linear Block Codes, Cyclic codes, Cryptography, Convolutional Codes, Viterbi Algorithm Synected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Analyze various coding schemes iii. Design an optimum decoder for various coding schemes used. Fort Books: 1 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Subov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Module Course contents Sem. Exam Marks						
Limit, Rate Distortion Theory, Channel Coding, Linear Block Codes, Cyclic codes, Cryptography, Convolutional Codes, Viterbi Algorithm Sepected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Analyze various coding schemes iii. Design an optimum decoder for various coding schemes used. Fext Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Module Course contents Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantane					Canacity S	hannon's
Convolutional Codes, Viterbi Algorithm Expected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Analyze various coding schemes iii. Design an optimum decoder for various coding schemes used. Fext Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ.2004 Vourse contents Module Course contents Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy 9 15% Noiseless coding theorem , construction of basic source codes,	•			U	1	
Expected outcome: The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Analyze various coding schemes iii. Design an optimum decoder for various coding schemes used. Fext Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Module Course contents Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropy, marginal, conditional and joint entr				es, eyene e	ouco, cryp	cogrupiij,
The students will be able to i. Apply the knowledge of Shannon's source coding theorem and Channel coding theorem for designing an efficient and error free communication link. ii. Analyze various coding schemes iii. Design an optimum decoder for various coding schemes used. Image: Coding Design an optimum decoder for various coding schemes used. Text Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 End Module Course contents Hours End Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy 9 15%						
designing an efficient and error free communication link. ii. Analyze various coding schemes iii. Design an optimum decoder for various coding schemes used. Text Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J, Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Module Course Plan Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. I Introduction to Information, information rate. I I Introduction to Information	-					
 Analyze various coding schemes Design an optimum decoder for various coding schemes used. Fext Books: P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Module Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropy, marginal, conditional and joint entropies, relation among entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy Noiseless coding theorem , construction of basic source codes, 				and Channel	coding the	eorem for
 iii. Design an optimum decoder for various coding schemes used. Fext Books: P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy Noiseless coding theorem , construction of basic source codes, 			cation link.			
Text Books: 1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course contents Module Course contents Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. 9 15% Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy 9 15%		-		1		
1. P S Sathya Narayana, Concepts of Information Theory & Coding, Dynaram Publications, 2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Kend Module Course Plan Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy 9 15%			g schemes used	•		
2005 2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Module Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy Noiseless coding theorem , construction of basic source codes,			ation Theory	Coding Dr	morom Duk	liastions
2. Simon Haykin: Digital Communication Systems, Wiley India, 2013. References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Module Course Plan Module Course contents Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. 9 15% Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy 9 15%		· · ·	ation Theory &	Counig, Dy	liarani Fut	filcations,
References: 1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Module Course Plan Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. 9 15% Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy Noiseless coding theorem , construction of basic source codes,			stems, Wiley I	ndia. 2013.		
1. Bose, Information theory coding and cryptography, 3/e McGraw Hill Education India , 2016 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Module Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. 9 15% Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy Noiseless coding theorem , construction of basic source codes, 4						
 2. D.E.R. Denning, Cryptography and Data Security, Addison Wesley, 1983. 3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Module Course contents Hours End Sem. Exam Marks Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy Noiseless coding theorem , construction of basic source codes, 			aphy, 3/e McG	raw Hill Edu	cation Indi	ia. 2016
3. J S Chitode, Information Theory and Coding, Technical Publications, Pune, 2009 4. Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Kelbert & Suhov, Information theory and coding by examples, Cambridge University Press, 2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Module Course contents Hours End Sem. Exam Marks Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. 9 15% Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy 9 15%						,
2013 5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Module Course contents Hours End Sem. Exam Marks Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy 9 15% Noiseless coding theorem , construction of basic source codes, Noiseless coding theorem , construction of basic source codes, 1						
5. Shu Lin & Daniel J. Costello. Jr., Error Control Coding : Fundamentals and Applications, 2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Module Course contents Hours End Sem. Exam Marks Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. 9 15% Introduction coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy 9 15%	4. Kel	ert & Suhov, Information theory and codi	ng by example	<mark>s, Cam</mark> bridg	e Universit	y Press,
2/e, Prentice Hall Inc., Englewood Cliffs, NJ,2004 Course Plan Module Course contents Hours End Sem. Exam Marks Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy 9 15% Noiseless coding theorem , construction of basic source codes, Noiseless coding theorem , construction of basic source codes, 1						
Course PlanModuleCourse contentsHoursEnd Sem. Exam MarksIIntroduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate.915%ISource coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy915%			-	damentals a	nd Applica	tions,
ModuleCourse contentsHoursEnd Sem. Exam MarksIIntroduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate.915%ISource coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy915%	2/e,	_	2004			
ModuleCourse contentsHoursSem. Exam MarksIIntroduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy915%Noiseless coding theorem , construction of basic source codes,Noiseless coding theorem , construction of basic source codes,1		Course Plan	12 1			
ModuleCourse contentsHoursExam MarksIIntroduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate.915%ISource coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy915%Noiseless coding theorem , construction of basic source codes,Noiseless coding theorem , construction of basic source codes,1		2014				
Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate. 9 15% I Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy 9 15% Noiseless coding theorem , construction of basic source codes, 1 1 1	Module	Course content	S		Hours	
Introduction to Information Theory. Concept of information, units, entropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate.915%ISource coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy915%						
Ientropy, marginal, conditional and joint entropies, relation among entropies, mutual information, information rate.915%Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy915%Noiseless coding theorem , construction of basic source codes,915%		ntraduction to Information Theory Com	cont of inform	notion units		warks
Ientropies, mutual information, information rate.915%Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy915%Noiseless coding theorem , construction of basic source codes,915%			1			
Source coding: Instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy Noiseless coding theorem , construction of basic source codes,			-	actori arrivitz	-	15%
codes, Kraft's inequality, coding efficiency and redundancyNoiseless coding theorem , construction of basic source codes,	-	-		nstantaneous		/0
Noiseless coding theorem , construction of basic source codes,						
					,	
II Shannon – Fano Algorithm. Huffman coding. 9 15%		Shannon – Fano Algorithm, Huffman codi			, 9	15%
Channel capacity – redundancy and efficiency of a channel, binary		-	-	annel hinary		/0

	symmetric channel (BSC), Binary erasure channel (BEC) – capacity of band limited Gaussian channels		
	FIRST INTERNAL EXAM		
ш	Continuous Sources and Channels: Differential Entropy, Mutual information, Waveform channels, Gaussian channels, Shannon – Hartley theorem, bandwidth, SNR trade off, capacity of a channel of infinite bandwidth, Shannon's limit	9	15%
IV	Introduction to rings, fields, and Galois fields. Codes for error detection and correction – parity check coding – linear block codes – error detecting and correcting capabilities – generator and parity check matrices – Standard array and syndrome decoding	9	15%
	SECOND INTERNAL EXAM		
V	Perfect codes, Hamming codes, encoding and decoding Cyclic codes, polynomial and matrix descriptions, generation of cyclic codes, decoding of cyclic codes BCH codes, Construction and decoding, Reed Solomon codes	9	20%
VI	Convolutional Codes – encoding – time and frequency domain approaches, State Tree & Trellis diagrams – transfer function and minimum free distance – Maximum likelihood decoding of convolutional codes – The Viterbi Algorithm. Sequential decoding.	9	20%
	END SEMESTER EXAM		

Question Paper

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50% for theory and 50% for logical/numerical problems, derivation and proof.

COURS		YEA INTROD	
EC403	MICROWAVE & RADAR	20	
Prerequis	ite: EC303 Applied Electromagnetic Theory, EC306 Antenna &	Wave Propa	agation
of vari • To stu • To und	jectives: roduce the various microwave sources, their principle of operations parameters dy the various microwave hybrid circuits and formulate their S milerstand the basic concepts, types, working of radar and introduce every server serv	atrices.	
Syllabus:			
Microwav and source Wave Tub	es: introduction, advantages, Cavity Resonators, Microwave va s, Klystron Amplifiers, Reflex Klystron Oscillators, Magnetron o e, Microwave measurements, Microwave hybrid circuits, Direc owave devices, Gunn diodes, Radar, MTI Radar, Radar Transmitt outcome:	oscillators, T tional coupl	Fravelling ers, Solid
	ts will be able to understand the basics of microwave engineerin	g and radar	systems.
	rrill I. Skolnik, Introduction to Radar Systems, 3/e, Tata McGrav nuel Y. Liao, Microwave Devices and Circuits, 3/e, Pearson Edu		
Reference	s:		
3. Ku 4. Ra	vid M. Pozar, Microwave Engineering,4/e, Wiley India, 2012. Ikarni M, Microwave and Radar Engineering, 4/e, Umesh Publica o, Microwave Engineering, 2/e, PHI, 2012. Dert E. Collin, Foundation of Microwave Engineering, 2/e, Wiley		
	Course Plan		
Module	Course contents Est d	Hours	End Sem. Exam Marks
T	Microwaves: introduction, advantages, Cavity Resonators - Rectangular and Circular wave guide resonators- Derivation of resonance frequency of Rectangular cavity.		1 = 67
I	Microwave vacuum type amplifiers and sources: Klystron Amplifiers - Re-entrant cavities, Velocity modulation, Bunching (including analysis), Output power and beam	4	15%
н	Reflex Klystron Oscillators : Derivation of Power output, efficiency and admittance		1 = 07
Π	Magnetron oscillators : Cylindrical magnetron, Cyclotron angular frequency, Power output and efficiency.	3	15%
	FIRST INTERNAL EXAM		
III	Travelling Wave Tube : Slow wave structures, Helix TWT, Amplification process, Derivation of convection current, axial electric field, wave modes and gain.		15%
	Microwave measurements: Measurement of impedance, frequency and power	2	

IV	Microwave hybrid circuits: Scattering parameters, Waveguide tees- Magic tees, Hybrid rings, Corners, Bends, and Twists. Formulation of S-matrix.	5	15%
	Directional couplers : Two hole directional couplers, S-matrix of a directional coupler. Circulators and isolators.	4	
	SECOND INTERNAL EXAM		
v	Solid state microwave devices: Microwave bipolar transistors, Physical structures, Power frequency limitations equivalent circuit. Principle of Tunnel diodes and tunnel	4	20%
	Gunn diodes : Different modes, Principle of operation Gunn Diode Oscillators.	2	
VI	 Radar: The simple Radar equation. Pulse Radar, CW Radar, CW Radar with non zero IF, Equation for doppler frequency FM-CW Radar using sideband super heterodyne receiver. MTI Radar-Delay line canceller, MTI Radar with power amplifier & power oscillator, Non coherent MTI Radar, Pulse 	5	20%
	Radar Transmitters: Radar Modulator-Block diagram, Radar receivers- noise figure, low noise front ends, Mixers, Radar Displays	3]
	END SEMESTER EXAM		

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 60% for theory and 40% for logical/numerical problems, derivation and proof.

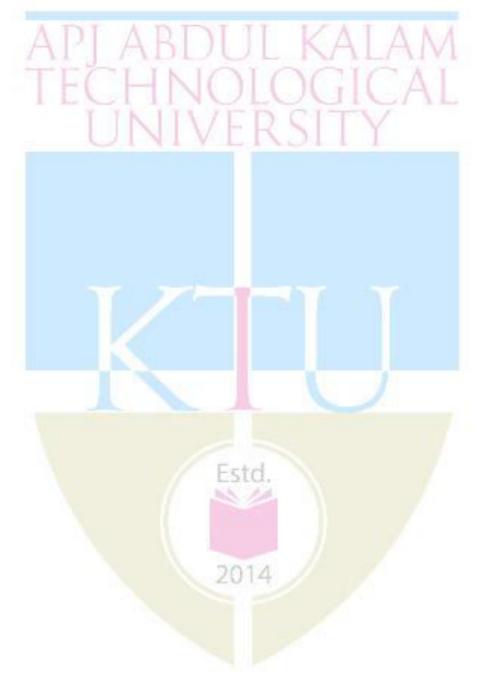
COURS	E			YEA	R OF
CODE		COURSE NAME	L-T-P-C	INTROD	UCTION
EC405		OPTICAL COMMUNICATION	3-0-0-3	20	16
Prerequisi	te: EC20	3 Solid State Devices, EC205 Electronic C	ircuits		
Course ob	jectives:				
		e the concepts of light transmission through	n optical fibers,	optical sour	rces and
	ectors.				
		the performance of various optical transmis		· .	C / 1
		he working of optical components and the	ne principle of	operation	of optical
-	olifiers.	on WDM technique.	IC AI		
		ight wave system, advantages, classificatio	n of light wave	systems fi	hre types
		r effects in fibres, Fibre materials, fabrication			
		etectors, Optical receivers, Digital transm			
	-	oduction to free space optics, Optical Time	-	-	-
Expected of	outcome				
The studen					
		orking of optical source and detectors.			
	-	e performance of various optical modulation			
		nowledge of optical amplifiers in the design performance of optical amplifiers.	of optical link.		
	-	oncept of WDM			
		principle of FSO and LiFi.			
Text Book					
1. Ger	d Keiser	, Opt <mark>ical</mark> Fiber Communic <mark>a</mark> tions, 5/e, McG1	aw Hill, 2013.		
2. Mis	shra and 1	Ugale, Fibre optic Comm <mark>un</mark> ication, Wiley, 2	2013.		
References	5:				
		i, Optical Fibre Communication, McGraw H	Hill, 2015.		
	· •	ical fibre communication, Elsevier, 2014			
		or- Optical communications, 3/e , Pearson, 2			
	-	lais, Fibre Optic Communications, 5/e Pear cal Communication Essentials (SIE), 1/e M		ention New	Delhi
200		car communication Essentials (SIE), i/e M			Denn,
		Course Plan	1		
			100		End
MILL				TT	Sem.
Module		Course contents		Hours	Exam
					Marks
		light wave system, advantages, classifie	U		
	-	stems. Fibres: types and refractive index	-		
Ι	•	f fibres: modes in SI and GI fibres, linear	and non linear	8	1507
		1 fibres, dispersion, Velocity Dispersion, modal, wave guide an	d Polarization		15%
	-	Dispersion, attenuation- absorption,			
	scatterin		und		
		aterials, fabrication of fibres, photonic crys	tal fibre, index		
II		PCF, photonic bandgap fibre, fibre cables.		7	15%
	Optical	sources, LEDs and LDs, structures,	characteristics,		

Laser diode noise in fibre communications FIRST INTERNAL EXAM Optical detectors, types and characteristics, structure and working of PIN and AP, noise in detectors, comparison of performance. Optical receivers, Ideal photo receiver and quantum limit of detection. 6	15%
IIIOptical detectors, types and characteristics, structure and working of PIN and AP, noise in detectors, comparison of performance. Optical receivers, Ideal photo receiver and quantum limit of detection.6	15%
IVDigital transmission systems, design of IMDD links- power and rise time budgets, coherent Systems, sensitivity of a coherent receiver, comparison with IMDD systems. Introduction to soliton transmission, soliton links using optical amplifiers, GH effect, soliton-soliton interaction, amplifier gain fluctuations, and design guide lines of soliton based links.8	15%
SECOND INTERNAL EXAM	
V Optical Amplifiers ,basic concept, applications, types, doped fibre amplifiers, EDFA, basic theory, structure and working, Semiconductor laser amplifier, Raman amplifiers, TDFA, amplifier configurations, performance comparison.	20%
The WDM concept, WDM standards, WDM components, couplers, splitters, Add/ Drop multiplexers, gratings, tunable filters, system performance parameters.VIIntroduction to optical networks. Introduction to free space optics, LiFi technology and VLC. Optical Time Domain Reflectometer (OTDR) – fault detection, length and refractive index measurements.	20%
END SEMESTER EXAM	

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50% for theory and 50% for logical/numerical problems, derivation and proof.

2014

COURS	E		YEAI	R OF		
CODE		-P-C	INTROD			
EC407	COMPUTER COMMUNICATION 3-0	-0-3	201	16		
Prerequis	ite: NIL					
Course ob	jectives:					
	re the basic concepts of computer network and working	ng of 1	ayers, prot	ocols and		
	ces in a computer network.	AK				
	unications and give them an understanding of common the					
Syllabus:	Introduction to computer communication, Transport					
	ction of Networks: Internetwork, Network models: OSI					
	Layer, Data Link Layer, Media access control, Ethernet					
	Idressing: IPV4, IPV6, Subnetting, CIDR, ICMP, IGMP ngestion Control & Quality of Service, Application Laye					
	curity, security attacks, Firewalls, Intrusion detection syst			ystem and		
Expected						
A	its will have a thorough understanding of:					
	ferent types of network topologies and protocols.					
ii. Th	e layers of the OSI model and TCP/IP with their functions					
	e concept of subnetting and routing mechanisms.					
	e basic protocols of computer networks, and how they can	be used	to assist in	network		
	ign and implementation.					
	curity aspects in designing a trusted computer communicat	tion syste	em.			
Text Book		ourity	IV Edia	tion Tota		
1.	Behrouz A. Forouzan, Cryptography & Network Se McGraw-Hill, 2008	curity ,	, IV Eul	lion, Tata		
2	J F Kurose and K W Ross, Computer Network A Top-o	lown An	nroach Fea	turing the		
2.	Internet, 3/e, Pearson Education, 2010			aung me		
Reference						
	Behrouz A Forouzan, Data Communications and Networ	king, 4/e	e, Tata McO	Graw-Hill,		
	2006. Estd.					
2.	Larry Peterson and Bruce S Davie: Computer Network- A	A System	Approach,	4/e,		
	Elsevier India, 2011.					
3.	S. Keshav, An Engineering Approach to Computer Netwo	orking, P	earson Edu	cation,		
4		2 14	C 1111			
4.	Achyut S.Godbole, Data Communication and Networking	g, 2e, Mc	Graw Hill	Education		
	New Delhi, 2011					
	Course Plan					
Module	Course content (42 hrs)			End		
			Hours	Sem.		
			nours	Exam		
				Marks		
	Introduction to computer communication: Transmission					
	serial and parallel transmission, asynchronous, syn	chronous	s, 2	15%		
	simplex, half duplex, full duplex communication.					
	Switching: circuit switching and packet switching					


			1
	Networks: Network criteria, physical structures, network models, categories of networks, Interconnection of Networks: Internetwork	2	
	Network models: Layered tasks, OSI model, Layers in OSI model, TCP/IP protocol suite.	2	
II	Physical Layer: Guided and unguided transmission media (Co-axial cable, UTP,STP, Fiber optic cable)	2	
	Data Link Layer: Framing, Flow control (stop and wait, sliding window flow control)	2	15%
	Error control, Error detection(check sum, CRC), Bit stuffing, HDLC	2	
	Media access control: Ethernet (802.3), CSMA/CD, Logical link control, Wireless LAN (802.11), CSMA/CA	2	-
	FIRST INTERNAL EXAM		-
	Network Layer Logical addressing : IPv4 & IPV6	2	
	Address Resolution protocols (ARP, RARP)	2	15%
	Subnetting, Classless Routing(CIDR), ICMP, IGMP, DHCP	3	1370
III	Virtual LAN, Networking devices (Hubs, Bridges & Switches)	1	
IV	Routing: Routing and Forwarding, Static routing and Dynamic routing	1	
	Routing Algorithms: Distance vector routing algorithm, Link state routing (Dijkstra's algorithm)	2	15%
	Routing Protocols: Routing Information protocol (RIP), Open Shortest Path First (OSPF), Border Gateway Protocol (BGP), MPLS	3	
	SECOND INTERNAL EXAM		
V	Transport Layer –UDP, TCP	1	
	Congestion Control & Quality of Service – Data traffic, Congestion, Congestion Control, QoS and Flow Characteristics	4	20%
	Application Layer – DNS, Remote Logging (Telnet), SMTP, FTP, WWW, HTTP, POP3, MIME, SNMP	3	
VI	Introduction to information system security, common attacks	1	
	Security at Application Layer (E-MAIL, PGP and S/MIME). Security at Transport Layer (SSL and TLS). Security at Network Layer (IPSec).	3	20%
	Defence and counter measures: Firewalls and their types. DMZ, Limitations of firewalls, Intrusion Detection Systems -Host based, Network based, and Hybrid IDSs	2	

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 90% for theory and 10% for logical/numerical problems, derivation and proof.

COURSE CODE		-T-P-C		YEAR RODU	OF CTION
EC409		-0-0-3		2016	
Letty		000		2010	
_	te: EC202 Signals & Systems				
Course obj					
	ntroduce the elements of control system and its modelling				
	introduce methods for analyzing the time response, the ility of systems.	e frequen	cy re	sponse	and the
	lesign control systems with compensating techniques.				
	ntroduce the state variable analysis method.				
	ntroduce basic concepts of digital control systems.				
Syllabus:					
	stem, types and application, feedback system, mathematic				
	ock diagram representation, signal flow graph, Mason				
-	nalysis, frequency analysis, stability concepts and anal	•			inalysis,
Expected o	ty and controllability, digital control systems, state space	analysis,	Jury	s test	
•	ts will be able to				
	resent mathematically a systems and deriving their transfe	er function	n moo	lel	
	lyse the time response and frequency response of the syste				
	I the stability of system				
	ign a control system with suitable compensation technique	es			
	lyse a digital control system.				
Text Books					
1. Fari	d Golnaraghi, Benjamin C. Kuo, Automatic Control Syste	ems, 9/e, V	Wiley	India.	
2. Gop	al, Control Systems, 4/e, McGraw Hill Education India E	ducation	, 2012	2.	
3. Oga	ta K., Discrete-time Control Systems, 2/e, Pearson Educat	tion.			
References					
1. Gop 201	al, Digital Control and State Variable Method, 4/e, McGr. 2.	aw Hill E	ducat	tion Ind	ia
2. Nor	man S. Nise, Control System Engineering, 5/e, Wiley Indi	ia			
3. Oga 200	ta K., Modern Control Engineering, Prentice Hall of India 2.	a, 4/e, Pea	rson	Educati	on,
4. Ricl 200	nard C Dorf and Robert H. Bishop, Modern Control System 1.	ms, 9/e, F	earsc	n Educ	ation,
	Course Plan				
Module	Course contents				End
]	Hours	Sem Exam Marks
I	Basic Components of a Control System, Applications, Control Systems and Closed-Loop Control Systems, E control system			1	15%
	Effects of Feedback on Overall Gain, Stability, disturbance or Noise	, Extern	al,	1	

	Types of Feedback Control Systems, Linear versus Nonlinear	1	
	Control Systems, Time-Invariant versus Time-Varying Systems.	-	
	Overview of solving differential equations using Laplace transforms	1	
	Mathematical modelling of control systems - Electrical Systems and Mechanical systems.	2	
	Block diagram representation and reduction methods	2	-
	Signal flow graph and Mason's rule formula.	$\frac{2}{2}$	-
	Standard test signals. Time response specifications.	1	
	Time response of first and second order systems to unit step input,	2	1.5.00
II	ramp inputs, time domain specifications		15%
	Steady state error and static error coefficients.	1	
	Dynamic error coefficient.	1	-
	FIRST INTERNAL EXAM		
	Stability of linear control systems: methods of determining stability,	2	
	Routh's Hurwitz Criterion.		
III	Root Locus Technique: Introduction, properties and its construction.	2	15%
	Frequency domain analysis: Frequency domain specifications, correlation between time and frequency responses.	1	
	Nyquist stability criterion: fundamentals and analysis	2	_
IV	Relative stability: gain margin and phase margin. Stability analysis with Bode plot.	2	150
	Design of Control Systems: PI,PD and PID controllers	2	15%
	Design with phase-lead and phase-lag controllers (frequency domain approach), Lag-lead	2	
	SECOND INTERNAL EXAM		
	State variable analysis: state equation, state space representation of	2	
	Continuous Time systems		
V	Transfer function from State Variable Representation, Solutions of	2	20%
	the state equations, state transition matrix		_
	Concepts of Controllability and Observability, Kalman's Test,	2	
	Gilbert's test		
	Discrete Control systems fundamentals: Overview of Z transforms.	2	
	State space representation for Discrete time systems.		_
	Sampled Data control systems, Sampling Theorem, Sample & Hold,	2	
VI	Open loop & Closed loop sampled data systems.		20%
VI	State space analysis : Solving discrete time state space equations,	2	20%
VI		3	20%
VI	State space analysis : Solving discrete time state space equations, pulse transfer function, Discretization of continuous time state space equations		20%
VI	State space analysis : Solving discrete time state space equations, pulse transfer function, Discretization of continuous time state space	3	20%

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 30% for theory and 70% for logical/numerical problems, derivation and proof.

COURSE				YEA	R OF	
CODE	COURSE NAME		L-T-P-C	INTROD		
	SPEECH AND AUDIO S	SIGNAL				
EC463	PROCESSING		3-0-0-3	20	16	
Prerequisite:	EC301 Digital Signal Processing					
Course object	ives:					
	niliarize the basic mechanism of			ne basic co	ncepts of	
	s for speech analysis and parame		-	4		
-	an overall picture about various					
	• To impart ideas of Perception of Sound, Psycho-acoustic analysis, Spatial Audio					
-	ion and rendering.	()()	IC A			
	oduce Audio Compression Schen		TC/1		<u> </u>	
	ech production, Time domain					
	analysis, Speech coding, Speech					
	gnal Processing Models of Audia					
_	ion and rendering, Audio com Transform coding of digital audi	-		ic Coung	oi Muiti-	
Expected outo		o, autio quaiti	y allalysis.			
The students w						
	tand basic concepts of speech	production s	peech analysis	speech co	oding and	
	metric representation of speech a	-		-	Juling und	
	p systems for various application			utions		
	signal processing models of soun		0	of perception	on models	
	dio signal processing.	1 1	11	1 1		
iv. Implem	ent audio compression algorithm	is and standard	ls.			
Text Books:						
Ŭ	as O'Shaughnessy, Speech Con		Human & M	lachine, IE	EE Press,	
	over 2/e, 1999; ISBN: 07803344					
	n Morgan and Ben Gold, Speed					
	ption Speech and Music, July 199	99, John Wiley	v & Sons, ISBN	l: 04713515	547	
References:						
	G. Childers, Speech Processing	g and Synthes	is Toolboxes,	John Wiley	/ & Sons,	
	ber 1999; ISBN: 0471349593			11 4004		
	and Juang, Fundamentals of Spe					
	and Schafer, Digital Processing				Duration	
	s F. Quatieri, Discrete-Time Sp		rocessing: Pri	nciples and	Practice,	
Prentic	e Hall; ISBN: 013242942X; 1/e		-			
	Cour	se Plan				
		1000			End	
					Sem.	
Module	Course con	tents		Hours	Exam	
					Marks	
Spe	ech Production: Acoustic the	ory of speec	h production.			
	ech Analysis: Short-Time Spee					
-	lysis (Short time energy, short tir	-			15%	
	ametric representation of speech					
LP	C Analysis (LPC model, Auto con	rrelation metho	od).			

II	Frequency domain analysis (Filter Banks, STFT, Spectrogram),Cepstral Analysis, MFCC.Fundamentals of Speech recognition and Text-to-speech conversion	8	15%
	FIRST INTERNAL EXAM		
III	Speech coding, speech enhancement, Speaker Verification, Language Identification	7	15%
IV	Signal Processing Models of Audio Perception: Basic anatomy of hearing System. Auditory Filter Banks, Psycho-acoustic analysis: Critical Band Structure, Absolute Threshold of Hearing, Simultaneous Masking, Temporal Masking, Quantization Noise Shaping, MPEG psycho-acoustic model.	6	15%
	SECOND INTERNAL EXAM		
v	Audio compression methods: Sampling rate and bandwidth requirement for digital audio, Redundancy removal and perceptual irrelevancy removal, Transform coding of digital audio: MPEG2-AAC coding standard, MDCT and its properties, Pre-echo and pre-echo suppression, Loss less coding methods.	7	20%
VI	Spatial Audio Perception and rendering: The physical and psycho-acoustical basis of sound localization and space perception. Spatial audio standards. Audio quality analysis: Objective analysis methods- PEAQ, Subjective analysis methods - MOS score, MUSHRA score	6	20%
	END SEMESTER EXAM		

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50% for theory and 50% for logical/numerical problems, derivation and proof.

2014

COURSE			YEAR OF
CODE	COURSE NAME	L-T-P-C	INTRODUCTION
EC465	MEMS	3-0-0 -3	2016

Prerequisite : NIL

Course objectives:

- To understand the operation of major classes of MEMS devices/systems
- To give the fundamentals of standard micro fabrication techniques and processes
- To understand the unique demands, environments and applications of MEMS devices

Syllabus:

MEMS and Microsystems applications, Review of Mechanical concepts, Actuation and Sensing techniques, Scaling laws in miniaturization, Materials for MEMS, Micro System fabrication techniques, Micro manufacturing, Micro system Packaging, Bonding techniques for MEMS, Overview of MEMS areas.

Expected outcome:

The student will be able to:

- i. Understand the working principles of micro sensors and actuators
- ii. Understand the application of scaling laws in the design of micro systems
- iii. Understand the typical materials used for fabrication of micro systems
- iv. Understand the principles of standard micro fabrication techniques
- v. Appreciate the challenges in the design and fabrication of Micro systems

Text Books:

- 1. Chang Liu, Foundations of MEMS, Pearson 2012
- 2. Tai-Ran Hsu, MEMS and Microsystems Design and Manufacture, TMH, 2002

References:

- 1. Chang C Y and Sze S. M., VLSI Technology, McGraw-Hill, New York, 2000
- 2. Julian W Gardner, Microsensors: Principles and Applications, John Wiley & Sons, 1994
- 3. Mark Madou, Fundamentals of Micro fabrication, CRC Press, New York, 1997
- 4. Stephen D. Senturia, Microsystem design, Springer (India), 2006.
- 5. Thomas B. Jones, Electromechanics and MEMS, Cambridge University Press, 2001

	Course Plan			
Module	Course content (42hrs) 2014	Hours	End Sem. Exam Marks	
Ţ	MEMS and Microsystems: Applications – Multidisciplinary nature of MEMS – principles and examples of Micro sensors and micro actuators – micro accelerometer –comb drives - Micro grippers – micro motors, micro valves, micro pumps, Shape Memory Alloys.	4		
Ι	Review of Mechanical concepts: Stress, Strain, Modulus of Elasticity, yield strength, ultimate strength – General stress strain relations – compliance matrix. Overview of commonly used mechanical structures in MEMS - Beams, Cantilevers, Plates, Diaphragms – Typical applications	3	15%	

	Flexural beams: Types of Beams, longitudinal strain under pure			
	bending – Deflection of beams – Spring constant of cantilever – Intrinsic stresses	3		
II	Actuation and Sensing techniques : Thermal sensors and actuators, Electrostatic sensors and actuators , Piezoelectric sensors and actuators, magnetic actuators		15%	
	FIRST INTERNAL EXAM			
Ш	Scaling laws in miniaturization - scaling in geometry, scaling in rigid body dynamics, Trimmer force scaling vector, scaling in electrostatic and electromagnetic forces, scaling in electricity and fluidic dynamics, scaling in heat conducting and heat convection.	5	15%	
	Materials for MEMS – Silicon – Silicon compounds – Silicon Nitride, Silicon Dioxide, Silicon carbide, Poly Silicon, GaAs , Silicon Piezo resistors,	4		
IV	Polymers in MEMS – SU-8, PMMA, PDMS, Langmuir – Blodgett Films, Micro System fabrication – Photolithography – Ion implantation- Diffusion – Oxidation – Chemicalvapour deposition – Etching		15%	
	SECOND INTERNAL EXAM			
V	Overview of Micro manufacturing – Bulk micro manufacturing, Surface micro machining , LIGA process –Microstereo lithography	6	20%	
	Micro system Packaging: general considerations in packaging design – Levels of Micro system packaging	3		
VI	Bonding techniques for MEMS : Surface bonding , Anodic bonding , Silicon - on - Insulator , wire bonding , Sealing – Assembly of micro systems	3	20%	
	Overview of MEMS areas : RF MEMS, BioMEMS, MOEMS, NEMS	2		
END SEMESTER EXAM				

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 70% for theory and 30% for logical/numerical problems, derivation and proof.

Estd.

Course code	Course Name	L-T-P - Credits	Year of Introduction
**451	Seminar and Project Preliminary	0-1-4-2	2016
	Prerequisite : N		
Course Object			
U	lop skills in doing literature survey, techn	nical presentation and re-	port preparation.
	le project identification and execution of		
project		F	
Course Plan	ADI ARDI II	KALAM	
Seminar: Each	student shall identify a topic of current r	elevance in his/her bran	ch of engineering
	faculty concerned, collect sufficient lit		
	port and present in the class.	UICAL	
Project prelim	inary:	TTV	
	e project relevant to the branch of study		
	students can do the project individually a		
	posal before the assessment board (ex	cluding the external e	xpert) and get i
approved by the			
	y work to be completed: (1) Literature	• • •	
	hypothesis/design/methodology (4) For	mulation of work plan	(5) Seeking funds
· · ·	of preliminary report	1	
	e project should be continued in the eight	in semester by the same	project team.
Expected out The students wi			
	a current topic of professional interest ar	nd present it before an a	idiance
	an engineering problem, analyse it and p		
n. identify	an engineering problem, anaryse it and p	propose a work plan to s	
Evaluation			
Seminar	: 50 marks		
(Distribution of	of marks for the seminar is as follows: i. F	Presentation : 40% ii. A	bility to answer
	% & iii. Report : 30%)		-
Project prelim	inary : 50 marks(Progress e	valuation by the supervi	sor : 40% and
	ation by the assessment board excluding		wo progress
evaluations, m	iid <mark>semester and end se</mark> mester, are manda	tory.)	
Note: All eval	uations are mandatory for course complet	tion and for awarding the	e final grade.
	2014		
	2014		

COURSE			YEAR OF
CODE	COURSE NAME	L-T-P-C	INTRODUCTION
	COMMUNICATION SYSTEMS LAB		
EC431	(OPTICAL & MICROWAVE)	0-0-3-1	2016
Prerequisite	EC403 Microwave & Radar Engineering, EC	405 Optical Co	mmunication
Course objec			
	ovide practical experience in design, testing,		
	rcuits used for microwave and optical commu	nication enginee	ring.
List of Expen		ALAN	
	Experiments: (Minimum Six experiments ar	e mandatory)	A. T.
	V diode characteristics.	$-\Delta$	
	Klystron Mode Characteristics.		
	R and Frequency measurement.	TV	
•	the relation between Guide wave length, free	space wave leng	gth and cut off wave
length	6 6		
	rement of E-plane and H-plane characteristics	•	
	ional Coupler Characteristics.	1 . 1	
	own load impedance measurement using smith	chart and verifi	cation using
	ission line equation.	alactric call	
	rement of dielectric constant for given solid d na Pattern Measurement.	lelectric cell.	
	of Vector Network Analyser		
10. Study	of vector Network Analyser		
Ontical Exne	eriments: (Minimum Six Experiments are n	nandatory)	
	rement of Numerical Aperture of a fiber, after		ber ends.
	of losses in Optical fiber	propuning the h	
-	g up of Fiber optic Digital link.		
•	ation of a Splice joint and measurement of the	splice loss.	
	vs Current (P-I) characteristics and measure s		of Laser Diode.
	e vs Current (V-I) characteristics of Laser Dic		
7. Power	vs Current (P-I) characteristics and measure s	lope efficiency	of LED.
8. Voltag	e vs Current (V-I) characteristics of LED.		
9. Charac	cteristics of Photodiode and measure the respo	nsivity.	
	cteristics of Avalanche Photo Diode (APD) and		
	rement of fiber characteristics, fiber damage a	nd splice loss/co	onnector loss by
OTDR			