SEMESTER 8

COMPUTER SCIENCE AND ENGINEERING

SOFTWARE ARCHITECTURES

Course Code	PECST861	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To develop a comprehensive understanding of software architecture principles and patterns.
- **2.** To provide the ability to design and analyze software architectures.

Module No.	Syllabus Description	Contact Hours	
	Introduction to Software Architecture: Definition and Importance,		
1	Architecture in the Life Cycle, Role of the Architect vs. Engineer,	8	
	Requirements engineering: Stakeholders, Concerns, and Types of		
	Requirements, Use Cases and Tactics.		
	Architectural Patterns and Styles: Architectural Patterns- Overview of		
_	Patterns and Styles, Applying Patterns and Choosing a Style. Patterns for	_	
2	Enterprise Applications: Enterprise Applications and Layered Patterns,	8	
	Concurrency Problems.		
	Components, Contracts, and Service-Oriented Architectures:		
	Component Software- Nature of Components and Reuse, UML and		
3	Components Design by Contract- Contracts, Polymorphism, Inheritance, and	9	
	Delegation Service-Oriented Architectures- Standards, Technologies, and		
	Security.		
	Architecture Evaluation and Description: Describing Architectures and		
4	Viewpoints, Evaluating Architectures. Architectural Description Languages	7	
	(ADLs)- Overview and Applications.		

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the foundational concepts of software architecture, including the roles of stakeholders and the importance of requirements engineering.	K2
CO2	Apply architectural patterns and styles to design software systems, particularly in enterprise contexts.	К3
CO3	Understand the principles of component-based software design and the use of contracts in ensuring reliable software systems.	K2
CO4	Apply architectural description techniques to document and evaluate software architectures.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2									3
CO2	3	3	3		2							3
CO3	3	2	2		2							3
CO4	3	3	3		2							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Sl. No Title of the Book Name of the Author/s Name of the Publisher and Y					
1	Software Architecture	A.Bijlsma, B.J.Heeren, E.E.Roubtsova,S. Stuurman	Free Technology Academy	1/e, 2011		
2	Software Architecture 1	Mourad Chabane Oussalah	Wiley	1/e, 2014		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Head First Software Architecture: A Learner's Guide to Architectural Thinking	Raju Gandhi, Mark Richards, Neal Ford	Oreilly	1/e, 2024			

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://www.youtube.com/playlist?list=PL4JxLacgYgqTgS8qQPC17fM-NWMTr5GW6				

NATURAL LANGUAGE PROCESSING

(Common to CS/CA/CD)

Course Code	PECST862	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of natural language processing (NLP) and language models, focusing on the principles and techniques of prompt engineering to effectively guide and optimize AI-driven outputs.
- 2. practical skills necessary to design, implement, and evaluate prompt engineering strategies across various applications, while considering the ethical implications and challenges associated with AI-generated content.

Module No.	Syllabus Description	Contact Hours
1	Introduction to NLP: Introduction to Natural Language Processing - Various stages of traditional NLP - Challenges - Basic Text Processing techniques - Common NLP Tasks. N-gram Language Models - Naive Bayes for Text Classification, and Sentiment Analysis - Evaluation-Precision, Recall and F-measure-Test sets and cross validation.	7
2	Traditional NLP Techniques: Annotating Linguistic Structures - Context-Free Grammars, Constituency Parsing, Ambiguity, CYK Parsing, Dependency Parsing - Transition-Based Dependency Parsing, Graph-Based Dependency Parsing, Evaluation.	7
3	Neural Networks for NLP: Word representations - Lexical Semantics, Vector Semantics, TF-IDF, Pointwise Mutual Information (PMI), Neural Word embeddings - Word2vec, GloVe, Contextual Word Embeddings. Evaluating Vector Models - Feedforward Neural Networks for Text Classification	10

	Advanced NLP and Applications:	
	Sequence Modelling - Recurrent Neural Networks, RNNs as Language	
	Models, RNNs for NLP tasks, Stacked and Bidirectional RNN architectures,	
	Recursive Neural Networks, LSTM & GRU, Common RNN NLP	
4	Architectures, Encoder-Decoder Model with RNNs, Attention models,	12
	Transformers.	
	NLP Applications - Machine Translation, Question Answering and	
	Information Retrieval, Introduction to Large Language Models.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the foundational concepts of NLP and apply that to do text processing.	К3
CO2	Utilize word representations and evaluate vector models for NLP	К3
CO3	Analyse and implement advanced linguistic annotation and parsing techniques	K4
CO4	Apply advanced sequence modeling techniques using Neural Networks	К3
CO5	Apply NLP techniques in machine translation, question answering, and information retrieval.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3								3		
CO2	3	3			3							
CO3	3	3									3	
CO4	3	3	3		3							
CO5	3	3	3			3						

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition	Dan Jurafsky and James H. Martin.	Pearson	2006			
2	Introduction to Natural Language Processing	Jacob Eisenstein	MIT Press	2019			
3	Natural Language Processing with Transformers	Lewis Tunstall, Leandro von Werra, and Thomas Wolf	O'Reilly	2022			

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Deep learning for Natural Language Processing	Stephan Raaijmakers	Manning	2022					
2	Natural Language Processing with PyTorch	Delip Rao and Brian McMahan	O'Reilly	2019					
3	Deep Learning	Ian Goodfellow, Yoshua Bengio, Aaron Courville	MIT Press	2016					

	Video Links (NPTEL, SWAYAM)
No.	Link ID
1	https://onlinecourses.nptel.ac.in/noc19_cs56

TOPICS IN SECURITY

(Common to CS/CM/AM/CB/CN/CU/CI)

Course Code	PECST863	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To explore various web security and privacy concerns
- 2. To impart security policies and models for data integrity.
- 3. To enable the learners to protect databases and introduce IDS

Module No.	Syllabus Description	Contact Hours	
	Fundamentals of Security and Threat Management: Computer Security,		
	Threats, Harm, Vulnerabilities, Authentication, Access Control		
	Web Security- Browser Attacks, Web Attacks Targeting Users, Obtaining		
1	User or Website Data	9	
	Privacy- Privacy Concepts, Principles and Policies, Privacy on the Web,		
	Privacy Principles and Policies, Email Security.		
	Cryptography in Network Security- Network Encryption, Browser		
	Encryption, Onion Routing, IPSEC, VPN		
	Intrusion Detection and Prevention Systems-Types of IDSs, Other		
2	Intrusion Detection Technology, Intrusion Prevention Systems, Intrusion	9	
	Response, Goals for Intrusion Detection Systems, IDS Strengths and		
	Limitations		
	Database Security: -Machine Learning for Malware detection, Supervised		
	Learning for Misuse/Signature Detection, Anomaly Detection using ML,		
	Spam detection based on Machine Learning approach, Adversarial Machine		
3	Learning	10	
	Security Requirements of Databases, Reliability and Integrity of Databases,		
	Database Disclosure		

	Security policies and models: Confidentiality Policies, Bell- LaPadula	
	model, Integrity policies, Biba model, Clark-Wilson models, Chinese wall	
4	model, waterfall model.	8
	Management and Incidents- Security Planning, Business Continuity	
	Planning, Handling Incidents, Risk Analysis, Dealing with Disaster	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Explain the fundamentals of threat management, web security and privacy	K2				
CO2	Identify the significance of network security and IDS	K2				
CO3	Apply machine learning algorithms for database security	К3				
CO4	Explain the policies and models for data integrity along with managements and incidents associated with data	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books										
Sl. No	Title of the Book	Title of the Book Name of the Author/s				Title of the Book Name of the Author/s Name of the Publisher				
1	Security in Computing	Charles P. Pfleeger, Shari Lawrence Pfleeger Jonathan Margulies	Pearson	5/e, 2015						
2	Data mining and machine learning in cybersecurity	Dua, Sumeet, Xian Du	Auerbach Publications	1/e, 2011						
3	Machine learning and security: Protecting systems with data and algorithms.	Chio, Clarence, David Freeman	O'Reilly	1/e, 2018						
4	Network Security and Cryptography	Bernard Menezes	Cengage Learning	1/e, 2010						
5	Computer Security: Art and Science	M Bishop	Addison - Wesley	2/e, 2019						

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Principles of information security	E Whiteman, J Mattord	Cengage Learning	4/e, 2011							
2	Network Security Essentials: Applications and Standards	William Stallings	McGraw Hill	6/e, 2018							
3	Network security: the complete reference.	Bragg, Roberta	McGraw-Hill	1/e, 2004							
4	Database Security	Basta A., Zgola M,	Cengage Learning	3/e, 2011							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://onlinecourses.nptel.ac.in/noc24_cs121 https://nptel.ac.in/courses/106106093 https://archive.nptel.ac.in/courses/106/106/106106129/								

COMPUTATIONAL COMPLEXITY

(Common to CS/CM/AD/CB/CN/CU/CR/CI)

Course Code	PECST864	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST302, PCCST502	Course Type	Theory

Course Objectives:

- To develop an understanding of various computational models, including deterministic and nondeterministic models, Turing machines, and other computational models, and analyze their capabilities and limitations, focusing on how these models influence the classification of problems into complexity classes.
- **2.** To explore key complexity classes such as P, NP, and PSPACE, and apply polynomial-time reductions to prove the NP-completeness of various problems, and also investigate space complexity, polynomial hierarchy, and advanced topics.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Complexity Theory - Basic concepts and motivations, Deterministic and nondeterministic models, Turing machines, and computational models. (Text 2 - Ch 7) Complexity Classes P and NP - Definitions and examples of P and NP, Polynomial-time algorithms, NP-completeness and the Cook-Levin theorem. (Text 2 - Ch 7, 8) Reductions and Completeness - Polynomial-time reductions, NP-complete problems, and their significance, Examples of NP-complete problems (Text 1 - Ch 2)	9
2	Space Complexity - Space complexity classes: L, NL, PSPACE, Savitch's theorem and NL-completeness, PSPACE-completeness. (Text 2 - Ch 8) Polynomial Hierarchy and Alternation - Definition of the polynomial hierarchy (PH), Complete problems for each level of PH, Relationship between PH and other classes. (Text 1 - Ch 5)	9
3	Interactive Proofs - Definition and examples of interactive proofs, IP =	9

	PSPACE theorem, Zero-knowledge proofs. (Text 1 - Ch 8) Probabilistically Checkable Proofs (PCPs) - Introduction to PCPs, PCP theorem and implications, Applications in hardness of approximation. (Text	
4	1 - Ch 9) Circuit Complexity - Boolean circuits and circuit complexity, Circuit lower bounds, Complexity of specific functions. (Text 2 - Ch 9) Quantum Complexity - Basics of quantum computation, Quantum complexity classes: BQP, QMA, Quantum algorithms and their complexity. (Text 3 - Ch 10, 11)	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe and interpret different computational models, including deterministic and nondeterministic Turing machines.	K2
CO2	Recall and categorize complexity classes such as P, NP, and PSPACE, and explain their fundamental properties.	K2
CO3	Use polynomial-time reductions to demonstrate problem completeness and analyze the computational difficulty of problems.	К3
CO4	Evaluate problems based on their space complexity and apply theories like Savitch's theorem to assess space-bounded algorithms.	K4
CO5	Examine advanced topics in complexity theory, including interactive proofs, PCPs, and quantum complexity, and their implications for computational theory.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3									2
CO5	3	3	3									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computational Complexity: A Modern Approach	Sanjeev Arora, Boaz Barak	Cambridge University Press	1/e, 2019				
2	Introduction to the Theory of Computation	Michael Sipser	Cengage	3/e, 2014				
3	Quantum Computing: A Gentle Introduction	Eleanor Rieffel, Wolfgang Polak	MIT Press	1/e, 2014				

Reference Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s					
1	Randomized Algorithms	Rajeev Motwani and Prabhakar Raghavan	Cambridge University Press	1/e, 2004			
2	Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis	ilistic Michael Mitzenmacher and Cambridge		3/e, 2017			
3	Introduction to Algorithms	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein	The MIT Press Cambridge	4/e, 2023			
4	The Probabilistic Method	Noga Alon and Joel H. Spencer	Wiley-Blackwell	4/e, 2016			
5	Approximation Algorithms	Vijay V. Vazirani	Springer	4/e, 2013			
6	Theory of Computation : Classical And Contemporary Approaches	Dexter C Kozen	Springer	6/e, 2006			
7	Computational Complexity: A Conceptual Perspective,	Oded Goldreich	Cambridge University Press	1/e, 2008			

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc21_cs90/preview https://onlinecourses.nptel.ac.in/noc21_cs49/preview						
2	https://onlinecourses.nptel.ac.in/noc21_cs90/preview https://onlinecourses.nptel.ac.in/noc21_cs49/preview						
3	https://onlinecourses.nptel.ac.in/noc21_cs90/preview https://onlinecourses.nptel.ac.in/noc21_cs49/preview						
4	https://onlinecourses.nptel.ac.in/noc21_cs90/preview https://onlinecourses.nptel.ac.in/noc21_cs49/preview https://archive.nptel.ac.in/courses/106/104/106104241/						

SPEECH AND AUDIO PROCESSING

(Common to CS/CA/CM/CD/CR/AD/CC/CG)

Course Code	PECST866	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PECST636	Course Type	Theory

Course Objectives:

- 1. To get familiarised with speech processing and audio processing concepts.
- **2.** To equip the student to apply speech processing techniques in finding solutions to day-to-day problems

Module No.	Syllabus Description	Contact Hours
1	Speech Production: - Acoustic theory of speech production; Source/Filter model - Pitch, Formant; Spectrogram- Wide and narrow band spectrogram; Discrete model for speech production; Short-Time Speech Analysis; Windowing; STFT; Time domain parameters (Short time energy, short time zero crossing Rate, ACF); Frequency domain parameters - Filter bank analysis; STFT Analysis.	9
2	Mel-frequency cepstral coefficient (MFCC)- Computation; Pitch Estimation ACF/AMDF approaches; Cepstral analysis - Pitch and Formant estimation using cepstral analysis; <i>LPC Analysis</i> - LPC model; Auto correlation method - Levinson Durbin Algorithm	9
3	Speech Enhancement :- Spectral subtraction and Filtering, Harmonic filtering, Parametric resynthesis; Speech coding - fundamentals, class of coders: Time domain/spectral domain/vocoders, Sub band coding, adaptive transform coding, phase vocoder; Speaker Recognition:- Speaker verification and speaker identification, log-likelihood; Language identification - Implicit and explicit models; Machine learning models in Speaker Recognition.	9

4

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	To recall various steps in the speech production process	K2			
CO2	To summarise various speech processing approaches	K2			
CO3	To develop speech-processing applications in various domains	КЗ			
CO4	To analyse the speech processing model for audio perception	K4			

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2		2	2					3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3	2			2					3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Speech Communications: Human & Machine	Douglas O'Shaughnessy	IEEE Press	2/e, 1999				
2	Discrete-Time Speech Signal Processing: Principles and Practice	Thomas F. Quatieri	Prentice Hall	1/e, 2001				
3	Fundamentals of Speech Recognition	Lawrence Rabiner, Biing- Hwang Juang, B. Yegnanarayana	Pearson	1/e, 2008				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Theory and Application of Digital Processing of Speech Signals	Rabiner and Schafer	Prentice Hall	1/e, 2010					
2	Speech and Audio Signal Processing: Processing and Perception Speech and Music	Nelson Morgan and Ben Gold	John Wiley & Sons	2/e, 2011					

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://youtu.be/Xjzm7SkBU?si=j11bk3F7gocYjhfg					

STORAGE SYSTEMS

(Common to CS/CM/CR/CD/AM/AD)

Course Code	PECST867	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of storage technologies and architectures.
- 2. To empower students to design and implement effective storage solutions.

Module No.	Syllabus Description	Contact Hours			
1	Storage technologies:- Computer storage technologies-Magnetic bubble memories, Charged Coupled Devices - CCDs, Micro-Electro-Mechanical Systems - MEMS, Flash memories, Processing In Memory - PIM, Optical storage - Data deduplication in storage systems. Storage Arrays- Architectural Principles, Replication, Local Snapshot Redundant Arrays of Independent Disks (RAID) - RAID0,RAID2,RAID3, RAID4, RAID5, RAID6, Hybrid RAID.				
2	Data Storage Networking:- Fibre Channel SAN- FC SAN Components, SAN Topologies, iSCSI SAN- iSCSI names, Sessions, iSNS, Network Attached Storage - NAS Protocols, NAS Arrays, NAS Performance Object Storage - Objects and Object IDs, metadata, API Access	9			
3	Business Continuity, Backup and Recovery:- Replication- Synchronous Replication, Asynchronous Replication Application, Layer Replication, Logical Volume Manager-Based Replication, Backup Methods- Hot Backups, Offline Backups, LAN-Based Backups, LAN-Free Backups (SAN Based), Serverless Backups, NDMP, Backup Types- Full Backups, Incremental Backups, Differential Backups,	9			

	Synthetic Full Backups, Application-Aware Backups				
	Storage Management:-				
	Capacity Management- Capacity Reporting, Thin Provisioning				
	Considerations, Deduplication and Compression, Quotas and Archiving,				
4	Showback and Chargeback, Performance Management- Latency/Response				
	Time, IOPS,MBps and Transfer Rate, Factors Affecting Storage				
	Performance				
	Management Protocols and Interfaces.				

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject Internal Examination-1 (Written)		Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Describe emerging storage technologies.	K2			
CO2	Compare and contrast different storage networking technologies.	K2			
CO3	Understand the importance of business continuity.	K2			
CO4	Develop a comprehensive backup and recovery strategy	К3			
CO5	Utilize management tools and best practices to monitor, optimize, and secure storage resources, ensuring optimal performance and data integrity.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									3
CO2	3	3	2									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No Title of the Book Name of the Author/s Publisher and									
1	Data Storage Networking	Nigel Poulton	WILEY	2/e, 2015					
2	Computer Storage Fundamentals	Susanta Dutta	BPB Publication	1/e, 2018					

	Reference Books							
Sl. No Title of the Book Name of the Author/s Publisher and Y								
1	Storage Systems : Organization, Performance, Coding, Reliability, and Their Data Processing	Alexander Thomasian	Morgan Kaufmann	1/e, 2021				
2	Information Storage and Management	Somasundaram Gnanasundaram Alok Shrivastava	Wiley	2/e, 2012				

	Video Links (NPTEL, SWAYAM)				
Module No.					
1	https://archive.nptel.ac.in/courses/106/108/106108058/				

PROMPT ENGINEERING

(Common to CS/CM/CR/CD/AD/AM)

Course Code	PECST868	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- To develop students' practical skills in applying prompt engineering techniques to real-world
 applications, while fostering an awareness of the ethical considerations and challenges in the
 field
- **2.** To give an understanding of contextual cues to mitigating biases with techniques for seamless interaction with AI systems.

Module No.	Syllabus Description	Contact Hours		
	Introduction to Prompt Engineering and Language Models :-			
	Fundamentals of Natural Language Processing (NLP) - Overview of Language			
	Models: From Rule-Based Systems to Transformer Architectures (e.g., GPT,			
	BERT) - Understanding Prompts: Definition, Importance, and Applications -			
1	Introduction to Prompt Engineering: Techniques and Use Cases - Ethical	9		
	Considerations in Prompt Engineering			
	Handson: Explore various language models using platforms like OpenAI,			
	Hugging Face, or Google Colab; Experimenting with basic prompts to			
	understand the impact of phrasing and context on model outputs.			
	Techniques and Strategies in Prompt Engineering :-			
	Designing Effective Prompts - Best Practices and Common Pitfalls; Prompt			
	Tuning and Fine-Tuning Language Model; Using Zero-Shot, Few-Shot, and			
	Multi-Shot Learning in Prompts; Exploring the Role of Context, Repetition,			
2	and Specificity in Prompt Responses; Advanced Prompt Engineering	9		
	Techniques: Prompt Chaining, Iterative Prompting.			
	Handson: Crafting and optimizing prompts for specific tasks (e.g., text			
	generation, summarization, Q&A); Using prompt engineering to fine-tune pre-			

	trained models on specific datasets or tasks.	
3	Applications of Prompt Engineering: Prompt Engineering in Chatbots and Conversational AI; Content Generation: Creative Writing, Code Generation, and Data Augmentation; Prompt Engineering for Sentiment Analysis, Classification, and Translation; Integration of Prompt Engineering with Other AI Technologies (e.g., Computer Vision, Data Science); Real-World Case Studies and Industry Applications Handson: Developing a simple chatbot using prompt engineering techniques, Case study analysis and reproduction of real-world prompt engineering applications	9
4	Challenges, Future Trends, and Research in Prompt Engineering:- Challenges in Prompt Engineering: Ambiguity, Bias, and Misinterpretation; Evaluating and Improving Prompt Performance: Metrics and Benchmarks; Future Trends: Emerging Techniques and the Evolution of Language Models; Handson: Working on a capstone project to solve a real-world problem using prompt engineering	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the core principles of NLP, language models, and the role of prompts in influencing AI behavior.	K2
CO2	Demonstrate the ability to design and fine-tune prompts for specific tasks, optimizing language models for desired outputs	К3
CO3	Apply prompt engineering techniques to develop functional AI applications, such as chatbots, content generation tools, and automated systems.	К3
CO4	Compare the ethical implications of prompt engineering, addressing challenges such as bias, ambiguity, and misuse, and propose solutions to mitigate these issues.	К3
CO5	Apply prompt engineering techniques to a variety of assigned tasks	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Speech and Language Processing	Daniel Jurafsky and James H. Martin	Pearson	2/e, 2013
2	Unlocking the Secrets of Prompt Engineering	Gilbert Mizrahi	Packt	1/e, 2023
3	Prompt Engineering	Ian Khan	Wiley	1/e, 2024

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Natural Language Processing with Python	Steven Bird, Ewan Klein, and Edward Loper	Oreilly	1/e, 2009				
2	Transformers for Natural Language Processing	Denis Rothman	Packt	1/e, 2021				

COMPUTATIONAL NUMBER THEORY

(Common to CS/CM)

Course Code	PECST869	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST205 PCCST303 PCCST502	Course Type	Theory

Course Objectives:

- 1. To develop proficiency in key algorithms for number-theoretic operations, including primality testing, integer factorization, and modular exponentiation and to analyze and implement these algorithms efficiently to solve problems in number theory and cryptography.
- 2. To apply advanced computational techniques, such as elliptic curve cryptography and lattice-based methods, to address complex problems in cryptographic systems and gain practical skills to implement and evaluate these techniques within real-world security applications.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Number Theory - Basic concepts and definitions, Greatest common divisor (GCD) and Euclidean algorithm; Modular Arithmetic - Congruences and modular arithmetic, Applications of modular arithmetic; Integer Factorization - Prime numbers and factorization, Algorithms for integer factorization; Basic Algorithms - Algorithms for modular arithmetic, Fast exponentiation techniques	9
2	Advanced Factorization Algorithms - Pollard's rho algorithm, Elliptic curve factorization; Public-Key Cryptography - RSA algorithm, Security analysis of RSA; Elliptic Curve Cryptography - Introduction to elliptic curves, Algorithms for elliptic curve cryptosystems	9
3	Public Key Cryptography - RSA algorithm and its implementation, Security aspects and cryptanalysis; Elliptic Curve Cryptography - Basics of elliptic curves, Elliptic curve cryptosystems; Cryptographic Protocols - Key	9

	exchange protocols, Digital signatures and authentication	
4	Algebraic Number Theory - Algebraic integers and number fields, Factorization in number fields; Computational Methods - Algorithms for solving Diophantine equations, Applications in computational algebra; Recent Developments and Applications - Applications in modern cryptography and coding theory	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand basic number theory concepts and algorithms.	K2
CO2	Apply factorization algorithms to solve computational problems.	К3
CO3	Analyze and evaluate cryptographic systems based on number theory.	K4
CO4	Synthesize algebraic number theory concepts into computational methods.	K4
CO5	Create and present a project on recent advances and applications in computational number theory.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3	3	3							2
CO4	3	3	3	3	3					2	2	2
CO5	3	3	3									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A Computational Introduction to Number Theory and Algebra	Victor Shoup	Cambridge University Press	2/e, 2008			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Computational Number Theory and Modern Cryptography	Song Y. Yan	John Wiley & Sons	1/e, 2013			
2	A course in computational algebraic number theory	Henri Cohen	Springer-Verlag	4/e, 2000			
3	Computational Number Theory	Abhijit Das	CRC	1/e, 2013			
4	Modern Computer Algebra	Joachim von zur Gathen and Jürgen Gerhard	Cambridge University Press	4/e, 2013			
5	An Introduction to the Theory of Numbers	G. H. Hardy, Edward M. Wright, Roger Heath- Brown and Joseph Silverman	Oxford University Press	6/e, 2008			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/111/104/111104138/ https://archive.nptel.ac.in/courses/106/103/106103015/				
2	https://archive.nptel.ac.in/courses/111/104/111104138/ https://archive.nptel.ac.in/courses/106/103/106103015/				
3	https://archive.nptel.ac.in/courses/111/104/111104138/ https://archive.nptel.ac.in/courses/106/103/106103015/				
4	https://archive.nptel.ac.in/courses/111/104/111104138/ https://archive.nptel.ac.in/courses/106/103/106103015/				

NEXT GENERATION INTERACTION DESIGN

(Common to CS/CR/CM/CA/CD/AM/AD/CN/CC/CI/CG)

Course Code	PECST865	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None		

Course Objectives:

- 1. To provide a comprehensive understanding of the principles of interaction design and their application in augmented reality (AR) and virtual reality (VR) environments.
- **2.** To equip learners with practical skills in developing, prototyping, and evaluating AR/VR applications, focusing on user-centered design and advanced interaction techniques.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Interaction Design and AR/VR: Fundamentals of Interaction Design - Principles of interaction design, Human-computer interaction (HCI) basics, User experience (UX) design principles; Introduction to AR and VR - Overview of AR and VR technologies (Key differences and Application), Overview of AR/VR hardware (headsets, controllers, sensors), Software tools and platforms for AR/VR development.	8
2	User-Centered Design and Prototyping:- Understanding User Needs and Context - User research methods, Personas and user journey mapping, Contextual inquiry for AR/VR, Designing for AR/VR Environments, Spatial design principles, Immersion and presence in AR/VR, User interface (UI) design for AR/VR; Prototyping and Testing - Rapid prototyping technique, Usability testing methods, Iterative design and feedback loops.	8
3	Advanced Interaction Techniques:- Gesture - Designing for gesture-based interaction, Implementing gesture controls in AR/VR applications; Voice - Voice recognition technologies, Integrating voice commands in AR/VR; Haptic Feedback and Sensory Augmentation - Understanding haptic feedback and tactile interactions; Eye Gaze - Designing and integrating Eye Gaze in VR; Spatial Audio;	11

	Microinteraction; Motion capture and tracking technologies; Natural	
	Language Interaction and conversational interfaces; Type of IoT sensors	
	and uses.	
	Implementation, Evaluation, and Future Trends:-	
	Developing AR/VR Projects - Project planning and management,	
	Collaborative design and development, Case studies of successful AR/VR	
	projects; Evaluating AR/VR Experiences - Evaluation methods and metrics,	
4	Analyzing user feedback, Refining and improving AR/VR applications;	9
	Future Trends and Ethical Considerations- Emerging technologies in	
	AR/VR, Ethical implications of AR/VR, Future directions in interaction	
	design for AR/VR.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

- The students must be directed to measure the quality of the interfaces / GUI based on various techniques such as user testing.
- The students may be assessed based on their ability to analyze various performance of the interfaces /GUIs.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Apply fundamental interaction design principles and human-computer interaction (HCI) concepts to create effective and intuitive user experiences in AR/VR applications.	К3		
CO2	Demonstrate proficiency in using AR/VR hardware and software tools for the development and prototyping of immersive environments.	К3		
CO3	Conduct user research and apply user-centered design methodologies to tailor AR/VR experiences that meet specific user needs and contexts.	K4		
CO4	Implement advanced interaction techniques such as gesture controls, voice commands, haptic feedback, and eye gaze in AR/VR applications to enhance user engagement and immersion.	К3		
CO5	Evaluate AR/VR projects, utilizing appropriate evaluation methods and metrics, and propose improvements based on user feedback and emerging trends in the field.	K5		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Augmented Reality - Theory, Design and Development	Chetankumar G Shetty	McGraw Hill	1/e, 2023					
2	Virtual Reality and Augmented Reality: Myths and Realities	Ralf Doerner, Wolfgang Broll, Paul Grimm, and Bernhard Jung	Wiley	1/e, 2018					
3	Augmented Reality: Principles and Practice	Dieter Schmalstieg and Tobias Hollerer	Pearson	1/e, 2016					
4	Human–Computer Interaction	Alan Dix, Janet Finlay, Gregory D. Abowd, Russell Beale	Pearson	3/e, 2004					
5	Evaluating User Experience in Games: Concepts and Methods	Regina Bernhaupt	Springer	1/e, 2010					
6	Measuring the User Experience: Collecting, Analyzing, and Presenting Usability Metrics	Bill Albert, Tom Tullis	Morgan Kaufman	2/e, 2013					
7	The Fourth Transformation: How Augmented Reality & Artificial Intelligence Will Change Everything	Robert Scoble and Shel Israel	Patrick Brewster	1/e, 2016					
8	Augmented Reality and Virtual Reality: The Power of AR and VR for Business	M. Claudia tom Dieck and Timothy Jung	Springer	1/e, 2019					

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	Interaction Design https://archive.nptel.ac.in/courses/107/103/107103083/					
2	Virtual Reality https://archive.nptel.ac.in/courses/106/106/106106138/					
3	Augmented Reality https://www.youtube.com/watch?v=WzfDo2Wpxks					

INTRODUCTION TO ALGORITHM

(Common to CS/CA/CM/CD/CR/AD/AM)

Course Code	OECST831	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To give proficiency in analysing algorithm efficiency and solve a variety of computational problems, including sorting, graph algorithms.
- 2. To provide an understanding in algorithmic problem-solving techniques, including Divide and Conquer, Greedy Strategy, Dynamic Programming, Backtracking, and Branch & Bound algorithms.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Algorithm Analysis Time and Space Complexity- Asymptotic notation, Elementary operations and Computation of Time Complexity-Best, worst and Average Case Complexities- Complexity Calculation of simple algorithms Recurrence Equations: Solution of Recurrence Equations – Iteration Method and Recursion Tree Methods	9
2	Trees - Binary Trees - level and height of the tree, complete-binary tree representation using array, tree traversals (Recursive and non-recursive), applications. Binary search tree - creation, insertion and deletion and search operations, applications; Graphs - representation of graphs, BFS and DFS (analysis not required), Topological Sorting.	9
	Divide and Conquer - Control Abstraction, Finding Maximum and Minimum, Costs associated element comparisons and index comparisons, Binary Search, Quick Sort, Merge Sort - Refinements; Greedy Strategy - Control Abstraction, Fractional Knapsack Problem, Minimum Cost Spanning Trees – PRIM's Algorithm, Kruskal's Algorithm, Single Source Shortest Path Algorithm - Dijkstra's Algorithm.	9
4	Dynamic Programming - The Control Abstraction- The Optimality Principle	9

- Matrix Chain Multiplication, Analysis; All Pairs Shortest Path Algorithm -
Floyd-Warshall Algorithm; The Control Abstraction of Backtracking - The
N-Queens Problem. Branch and Bound Algorithm for Travelling Salesman
Problem.

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Identify algorithm efficiency using asymptotic notation, compute complexities, and solve recurrence equations	К3				
CO2	Use binary trees and search trees, and apply graph representations, BFS, DFS, and topological sorting	К3				
CO3	Use divide and conquer to solve problems like finding maximum/minimum, binary search, quick sort, and merge sort	К3				
CO4	Apply greedy strategies to solve the fractional knapsack problem, minimum cost spanning trees using Prim's and Kruskal's algorithms, and shortest paths with Dijkstra's algorithm.	К3				
CO5	Understand the concepts of Dynamic Programming, Backtracking and Branch & Bound	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

co is is applied in the pring of course outcomes to it of the course												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									1
CO2	2	3	2	2								2
CO3	3	3	3	2								2
CO4	2	2										2
CO5	2	3	2									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year					
1	Introduction to Algorithms	T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein	Prentice-Hall India	4/e, 2022					
2	Fundamentals of Computer Algorithms	Ellis Horowitz, SartajSahni, Sanguthevar Rajasekaran	Universities Press	2/e, 2008					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Algorithm Design	Jon Kleinberg, Eva Tardos	Pearson	1/e, 2005				
2	Algorithms	Robert Sedgewick, Kevin Wayne	Pearson	4/e, 2011				
3	The Algorithm Design Manual	Steven S. Skiena	Springer	2/e, 2008				

	Video Links (NPTEL, SWAYAM)			
No.	Link ID			
1	https://archive.nptel.ac.in/courses/106/105/106105164/			

WEB PROGRAMMING

Course Code	OECST832	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GXEST203	Course Type	Theory

Course Objectives:

- 1. To equip students with the knowledge and skills required to create, style, and script web pages using HTML5, CSS, JavaScript, and related technologies.
- 2. To provide hands-on experience with modern web development tools and frameworks such as React, Node.js, JQuery, and databases, enabling students to design and build dynamic, responsive, and interactive web applications.

Module No.	Syllabus Description			
1	Creating Web Page using HTML5 - Introduction, First HTML5 example,			
	Headings, Linking, Images, Special Characters and Horizontal Rules, Lists,			
	Tables, Forms, Internal Linking, meta Elements, HTML5 Form input Types,			
	Input and datalist Elements and autocomplete Attribute, Page-Structure			
	Elements; Styling Web Page using CSS - Introduction, Inline Styles,			
	Embedded Style Sheets, Linking External Style Sheets, Positioning Elements:,			
	Absolute Positioning, z-index, Positioning Elements: Relative Positioning, span,			
	Backgrounds, Element Dimensions, Box Model and Text Flow, Media Types			
	and Media Queries, Drop-Down Menus; Extensible Markup Language -			
	Introduction, XML Basics, Structuring Data, XML Namespaces, Document			
	Type Definitions (DTDs), XML Vocabularies			
2	Scripting language - Client-Side Scripting, Data Types, Conditionals, Loops,			
	Arrays , Objects , Function Declarations vs. Function Expressions , Nested			
	Functions , The Document Object Model (DOM) - Nodes and NodeLists,			
	Document Object, Selection Methods, Element Node Object, Event Types			
	Asynchronous JavaScript and XML - AJAX : Making Asynchronous			
	Requests , Complete Control over AJAX , Cross-Origin Resource Sharing			

	JavaScript library - jQuery - jQuery Foundations - Including jQuery, jQuery Selectors, Common Element Manipulations in jQuery, Event Handling in jQuery	
3	JavaScript runtime environment: Node.js - The Architecture of Node.js, Working with Node.js, Adding Express to Node.js; Server-side programming language: PHP - What Is Server-Side Development? Quick tour of PHP, Program Control, Functions, Arrays, Classes and Objects in PHP, Object-Oriented Design; Rendering HTML: React - ReactJS Foundations: The Philosophy of React, What is a component? Built- in components, User-defined components - Types of components, Function Components, Differences between Function and Class Components	9
4	SPA – Basics, Angular JS; Working with databases - Databases and Web Development, SQL, Database APIs, Accessing MySQL in PHP; Web Application Design - Real World Web Software Design, Principle of Layering, Software Design Patterns in the Web Context, Testing; Web services - Overview of Web Services - SOAP Services, REST Services, An Example Web Service, Web server - hosting options	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 = 24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop structured web pages with HTML5 and style them using CSS techniques, including positioning, media queries, and the box model.	К3
CO2	Write client-side scripts using JavaScript and utilize jQuery for DOM manipulation, event handling, and AJAX requests to create responsive and interactive user interfaces.	К3
CO3	Build and deploy server-side applications using Node.js, Express, and PHP, and integrate databases using SQL to store and retrieve data for dynamic content generation.	К3
CO4	Utilize React for building component-based single-page applications (SPAs), understanding the fundamental principles of component architecture, and leveraging AngularJS for web application development.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							3
CO2	3	3	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3		3							3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Web Development	Randy Connolly, Ricardo Hoar	Pearson	1/e, 2017				
2	Building User Interfaces with ReactJS - An Approachable Guide	Chris Minnick	Wiley	1/e, 2022				
3	Internet & World Wide Web - How to Program	Paul J. Deitel, Harvey M. Deitel, Abbey Deitel	Pearson	1/e, 2011				
4	SPA Design and Architecture: Understanding Single Page Web Applications	Emmit Scott	Manning Publications	1/e, 2015				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	A Hand Book On Web Development : From Basics of HTML to JavaScript and PHP	Pritma Jashnani	Notion press	1/e, 2022				
2	Advanced Web Development with React	Mohan Mehul	BPB	1/e, 2020				
3	JavaScript Frameworks for Modern Web Development	Tim Ambler, Sufyan bin Uzayr, Nicholas Cloud	Apress	1/e, 2019				

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1 https://archive.nptel.ac.in/courses/106/106/106106222/				
2 https://archive.nptel.ac.in/courses/106/106/106106156/				

SEMESTER S8 SOFTWARE TESTING

Course Code	OECST833	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Cultivate proficiency in software testing methodologies and techniques.
- **2.** To Foster expertise in software testing tools and technologies.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction to Software Testing & Automation:- Introduction to Software Testing - Concepts, importance of testing, software quality, and real-world failures (e.g., Ariane 5, Therac 25); Software Testing Processes - Levels of thinking in testing; Testing Terminologies - Verification, validation, fault, error, bug, test cases, and coverage criteria; Types of Testing - Unit, Integration, System, Acceptance, Performance (stress, usability, regression), and Security Testing; Industry Trends - AI in test case automation, Introduction to GenAI in testing; Testing Methods - Black-Box, White-Box, and Grey-Box Testing; Automation in Testing - Introduction to automation tools (e.g., Selenium, Cypress, JUnit); Case Study- Automation of Unit Testing and Mutation Testing using JUnit.	8
2	Unit Testing, Mutation Testing & AI-Driven Automation:- Unit Testing- Static and Dynamic Unit Testing, control flow testing, data flow testing, domain testing; Mutation Testing- Mutation operators, mutants, mutation score, and modern mutation testing tools (e.g., Muclipse); JUnit Framework - Automation of unit testing, frameworks for testing in real-world projects; AI in Testing - GenAI for test case generation and optimization, impact on automation; Industry Tools - Application of AI-driven testing tools in automation and predictive testing; Case Study - Mutation testing using JUnit, AI-enhanced test case automation.	8

	Advanced White Box Testing & Security Testing:-	
	Graph Coverage Criteria - Node, edge, and path coverage; prime path and round	
	trip coverage; Data Flow Criteria - du paths, du pairs, subsumption relationships;	
	Graph Coverage for Code - Control flow graphs (CFGs) for complex structures	
3	(e.g., loops, exceptions); Graph Coverage for Design Elements - Call graphs, class	10
	inheritance testing, and coupling data-flow pairs; Security Testing -	
	Fundamentals, tools (OWASP, Burp Suite), and their role in protecting modern	
	applications; Case Study - Application of graph based testing and security testing	
	using industry standard tools.	
	Black Box Testing, Grey Box Testing, and Responsive Testing:-	
	Black Box Testing - Input space partitioning, domain testing, functional testing	
	(equivalence class partitioning, boundary value analysis, decision tables, random	
	testing); Grey Box Testing - Introduction, advantages, and methodologies (matrix	
	testing, regression testing, orthogonal array testing); Performance Testing -	
4	Network latency testing, browser compatibility, responsive testing across multiple	10
	devices (e.g., BrowserStack, LambdaTest); Introduction to PEX - Symbolic	
	execution, parameterized unit testing, symbolic execution trees, and their	
	application; GenAI in Testing - Advanced use cases for predictive and responsive	
	testing across devices and environments; Case Study- Implementation of black-	
	box, grey-box, and responsive testing using PEX and AI-driven tools.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject			Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Tota l
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the ability to apply a range of software testing techniques, including unit testing using JUnit and automation tools.	K2
CO2	Illustrate using appropriate tools the mutation testing method for a given piece of code to identify hidden defects that can't be detected using other testing methods.	КЗ
CO3	Explain and apply graph coverage criteria in terms of control flow and data flow graphs to improve code quality.	K2
CO4	Demonstrate the importance of black-box approaches in terms of Domain and Functional Testing	К3
CO5	Illustrate the importance of security, compatibility, and performance testing across devices.	К3
CO6	Use advanced tools like PEX to perform symbolic execution and optimize test case generation and also leverage AI tools for automated test case prediction and symbolic execution with PEX.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

CO-1 O Mapping Table (Mapping of Course Outcomes to Frogram Outcomes)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3	3							3
CO3	3	3	3									3
CO4	3	3	3	3								3
CO5	3	3	3		3							3
CO6	3	3	3	3	3							3

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Introduction to Software Testing.	Paul Ammann, Jeff Offutt	Cambridge University Press	2/e, 2016							
2	Software Testing and Quality Assurance: Theory and Practice	Kshirasagar Naik, Priyadarshi Tripathy	Wiley	1/e, 2008							

	Reference Books										
Sl. No	Title of the Book	e of the Book Name of the Author/s Name of the Publisher		Edition and Year							
1	Software Testing	Ron Patten	Pearson	2/e, 2005							
2	Software Testing: A Craftsman's Approach	Paul C. Jorgensen	CRC Press	4/e, 2017							
3	Foundations of Software Testing	Dorothy Graham, Rex Black, Erik van Veenendaal	Cengage	4/e, 2021							
4	The Art of Software Testing	Glenford J. Myers, Tom Badgett, Corey Sandler	Wiley	3/e, 2011							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://archive.nptel.ac.in/courses/106/101/106101163/								
2	https://archive.nptel.ac.in/courses/106/101/106101163/								
3	https://archive.nptel.ac.in/courses/106/101/106101163/								
4	https://archive.nptel.ac.in/courses/106/101/106101163/								

SEMESTER S8

INTERNET OF THINGS

Course Code	OECST834	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NA	Course Type	Theory

Course Objectives:

- 1. To give an understanding in the Internet of Things, including the components, tools, and analysis through its fundamentals and real-world applications.
- **2.** To enable the students to develop IoT solutions including the softwares and programming of Raspberry Pi hardware.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction to IoT - Physical Design of IoT, Logical Design of IoT, IoT levels and Deployment templates, Domain Specific IoT- Home automation, Energy, Agriculture, Health and lifestyle.	9
2	IoT and M2M-M2M, Difference between IoT and M2M, Software Defined Networking, Network Function virtualization, Need for IoT System Management, Simple Network Management Protocol (SNMP), NETCONF, YANG; LPWAN - LPWAN applications, LPWAN technologies, Cellular (3GPP) and Non 3GPP standards, Comparison of various protocols like Sigfox, LoRA, LoRAWAN, Weightless, NB-IoT, LTE-M.	9
3	Developing IoT - IoT design methodology, Case study on IoT system for weather monitoring, Motivations for using python, IoT-system Logical design using python, Python Packages of Interest for IoT - JSON, XML, HTTPlib & URLLib, SMTPLib	9
4	Programming Raspberry Pi with Python-Controlling LED with Raspberry Pi, Interfacing an LED and switch with Raspberry Pi, Other IoT devices- PcDino, Beagle bone Black, Cubieboard, Data Analytics for IoT	9

Continuous Internal Evaluation Marks (CIE):

Attendance	e Assignment/ Microproject Internal Examination-1 (Written)		Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Each question carries 9 marks. Two questions will be given from each module, out of	
which 1 question should be answered.	60
Each question can have a maximum of 3 subdivisions. $(4x9 = 36 \text{ marks})$	
T	wo questions will be given from each module, out of which 1 question should be answered. ach question can have a maximum of 3 subdivisions.

Course Outcomes (COs)

At the end of the course, students should be able to:

	Course Outcome					
CO1	Understand domain-specific applications and apply the principles of IoT, including physical and logical design and deployment templates	K2				
CO2	Use the principles of IoT and M2M, their differences, and key concepts like SDN, NFV, and essential management protocols.	К3				
CO3	Develop and apply IoT design methodology, utilize Python for logical system design, and leverage key Python packages through practical case studies.	К3				
CO4	Experiment using Raspberry Pi with Python to control LEDs and switches, interface with other IoT devices.	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3							2		3
CO2	3	3	3							2		3
CO3	3	3	3	2						2		3
CO4	3	3	3	2						2		3

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Internet of Things - a Hands On Approach.	Arshdeep Bahga, Vijay Madisetti	Universities Press	1/e, 2016

	ŀ	Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Internet of Things : Architecture and Design Principles	Rajkamal	McGraw Hill	2/e, 2022
2	The Internet of Things –Key applications and Protocols	Olivier Hersent, David Boswarthick, Omar Elloumi	Wiley	1/e, 2012
3	IoT fundamentals: Networking technologies, Protocols and use cases for the Internet of things	David Hanes Gonzalo. Salgueiro, Grossetete, Robert Barton	Cisco Press	1/e, 2017

	Video Links (NPTEL, SWAYAM)				
No.	No. Link ID				
1	1 https://archive.nptel.ac.in/courses/106/105/106105166/				
2	https://archive.nptel.ac.in/courses/108/108/108108179/				

SEMESTER S8

COMPUTER GRAPHICS

Course Code	OECST835	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objective:

1. To provide strong technological concepts in computer graphics including the three-dimensional environment representation in a computer, transformation of 2D/3D objects and basic mathematical techniques and algorithms used to build applications.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Basics of Computer graphics - Basics of Computer Graphics and its applications. Video Display devices - LED, OLED, LCD, PDP and FED and reflective displays. Random and Raster scan displays and systems. Line and Circle drawing Algorithms - Line drawing algorithms-Bresenham's algorithm, Liang-Barsky Algorithm, Circle drawing algorithms - Midpoint Circle generation algorithm, Bresenham's Circle drawing algorithm.	10
2	Geometric transformations - 2D and 3D basic transformations - Translation, Rotation, Scaling, Reflection and Shearing, Matrix representations and homogeneous coordinates. Filled Area Primitives - Scan line polygon filling, Boundary filling and flood filling.	10
3	Transformations and Clipping Algorithms - Window to viewport transformation. Cohen Sutherland and Midpoint subdivision line clipping algorithms, Sutherland Hodgeman and Weiler Atherton Polygon clipping algorithms.	8
4	Three dimensional graphics - Three dimensional viewing pipeline. Projections- Parallel and Perspective projections. Visible surface detection algorithms- Back face detection, Depth buffer algorithm, Scan line algorithm, A buffer algorithm.	8

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5 15		10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the principles of computer graphics and displays	K2
CO2	Illustrate line drawing, circle drawing and polygon filling algorithms	К3
CO3	Illustrate 2D and 3D basic transformations and matrix representation	К3
CO4	Demonstrate different clipping algorithms and 3D viewing pipeline.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Graphics : Algorithms and Implementations	D. P. Mukherjee, Debasish Jana	РНІ	1/e, 2010		
2	Computer Graphics with OpenGL	Donald Hearn, M. Pauline Baker and Warren Carithers	РНІ	4/e, 2013		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Introduction to Flat Panel Displays	Jiun-Haw Lee, I-Chun Cheng, Hong Hua, Shin- Tson Wu	Wiley	1/e, 2020		
2	Computer Graphics and Multimedia	ITL ESL	Pearson	1/e, 2013		
3	Computer Graphics	Zhigang Xiang and Roy Plastock	McGraw Hill	2/e, 2000		
4	Principles of Interactive Computer Graphics	William M. Newman and Robert F. Sproull	McGraw Hill	1/e, 2001		
5	Procedural Elements for Computer Graphics	David F. Rogers	McGraw Hill	1/e, 2017		
6	Computer Graphics	Donald D Hearn, M Pauline Baker	Pearson	2/e, 2002		

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1.	Computer Graphics By Prof. Samit Bhattacharya at IIT Guwahati https://onlinecourses.nptel.ac.in/noc20_cs90/preview				