Subject: MA201 LINEAR ALGEBRA & COMPLEX ANALYSIS (FOR ALL BRANCHES)

	Module I		
SI. No	Questions	Marks	KTU
1.	Show that $u = y^3 - 3x^2y$ is harmonic and hence find its harmonic conjugate.	8	DEC 2016
2.	Define an analytic function and prove that an analytic function of constant modulus is constant.	8	DEC 2016
3.	Check whether the following functions are analytic or not. Justify your answer i) $f(z) = z + \overline{z}$ ii) $f(z) = z ^2$	4+4	MARCH2017
4.	Show that $f(z) = sin z$ is analytic for all z. Find $f'(z)$	7	MARCH2017
5.	Show that $v = 3x^2y - y^3$ is harmonic and find the corresponding analytic function	8	MARCH2017
6.	. Let $f(z) = u(x, y) + i v(x, y)$ be defined and continuous in some neighbourhood of a point $z = x + iy$ and differentiable at z itself. Then prove that the first order partial derivatives of u and v exist and satisfy Cauchy- Reimann equations	7	ARIL 2018
7.	Prove that $u = sin x \cosh y$ is harmonic.Hence find its harmonic conjugate.	8	ARIL 2018
8.	Check whether the function $f(z) = \frac{Re(z^2)}{ z ^2}$ if $z \neq 0$ = 0 if $z = 0$ is continuous at z=0	7	ARIL 2018
9.	Let f (z) = u+ iv is analytic ,prove that u = constant,v=constant are families of curves cutting orthogonally.	7	JULY2017
10	Prove that the function $u(x, y) = x^3 - 3xy^2 - 5y$ is harmonic everywhere . Also find the harmonic conjugate of u.	7	JULY2017
11	Find the points, if any, in complex plane where the function $f(z)=2x^2 + y + i(y^2 - x)$ is (i) differentiable(ii) analytic	8	JULY2017
12	Find the analytic function whose imaginary part is $v(x,y) = log(x^2 + y^2) + x - 2y.$	7	MAY 2019
	Module II		
1.	Find the image of $\left z - \frac{1}{2}\right \le \frac{1}{2}$ under the transformation $w = \frac{1}{2}$. Also find the fixed points of the transformation $w = \frac{1}{2}$	7	DEC2016

2.	Find the linear fractional transformation that maps the points	7	DEC2016
	$z_1 = 0$, $z_2 = 1$, $z_3 = \infty$ onto $w_1 = -1$, $w_2 = -i$, $w_3 = -i$		
	1 respectively.		
3	Find the image of the lines $x = c$ and $y = k$, where c and k are	7	DEC2016
5.	constants under the transformation $w = sin z$,	DLC2010
4.	Find the image of $0 < x < 1$, $\frac{1}{2} < y < 1$ under the mapping w	7	MARCH2017
	$= e^{z}$		
5.	Find the linear fractional transformation that carries $z_1 =$	7	MARCH2017
	-2 , $z_2 = 0$ and $z_3 = 2$ onto the points $w_1 = \infty w_2 = \frac{1}{4}$, $w_3 = \frac{1}{4}$		
	$\frac{3}{2}$ hence find the image of x axis		
	8		
6.	Find the image of the rectangular regio $n - \pi \leq x \leq x$	8	MARCH2017
	π , $a \leq y \leq b$ under the mapping $w = sin z$		
7.	Find the image of the region $ z - \frac{1}{2} \leq \frac{1}{2}$ under the	8	APRIL 2018
	transformation $w = \frac{1}{3}$		
	$\frac{1}{z}$		
8.	Find the image of the x axis under the linear fractional	8	APRIL 2018
	transformation $w = \frac{z+1}{z+1}$		
	2z+4		
9.	Under the transformation $w = z^2$, find the image of the	8	MAY 2019
	triangular region bounded by = 1, $y = 1$ and $x + y = 1$.		
10.	Find the bilinear transformation that maps the points $-1, i, -1$	8	MAY 2019
	onto <i>i</i> ,0,– <i>i</i> .		
11	Produka income of the helf states Defails 200 to 11		
11.	Find the image of the half plane $Re(z) \ge 2$, under the map $W = Iz$	8	JULY 2017 MAY 2019
	z-2i = 2	U	10011 2015
	Module III		
1	Evaluate $\int_{c} Re(z) dz$ where is the straight line from 0 to 1+2i	7	DEC2016
2	Show that $\int_0^\infty \frac{1}{1+x^4} dx = \frac{\pi}{2\sqrt{2}}$	8	DEC2016
	Integrate $\frac{z^2}{z}$ counter clockwise around the circle $ z ^2 z ^{\frac{\pi}{2}}$	7	DEC2016
3	$z^{2}-1$ 2	2.4	
4	Evaluate $\int_c z dz$	3+4	MARCH2017
-	i)where c is the line segment joining i and –i		
5	Verify Cauchy's integral theorem for z^2 taken over the boundary of the	8	MARCH2017
	rectangle with vertices -1,1,1+i,1-l in the counter clockwise sense.	Ĭ	

6	Evaluate $\int_{c} Im(z^{2}) dz$ where c is the triangle with vertices 0,1,i counter clockwise.	7	APRIL 2018
7	Use Cauchy's Integral Formula, evaluate $\int_c \frac{z^2}{z^3 - z^2 - z + 1} dz$ where c is taken counter clockwise around the circle: i) $ z + 1 = \frac{3}{2}$ ii) $ z - 1 - i = \frac{\pi}{2}$	8	APRIL 2018
8	Find the Taylor series and Laurent series of $f(z) = \frac{-2z+3}{z^2-3z+2}$ with centre 0 in i) $ z < 1$ ii $1 < z < 2$	8	APRIL 2018
9	Find the Laurent series expansion of $f(z) = \frac{1}{1-z^2}$ which is convergent in i) $ z - 1 < 2$ ii) $ z - 1 > 2$	8	MARCH 2017
10	If $(z) = \frac{1}{z^2}$, find the Taylor series that converges in $ z - i < R$ and the Laurent series that converges in $ z - i > R$	8	DEC 2016
11	Using Cauchy's integral formula, evaluate $\int_C \frac{e^z}{(z^2+4)(z-1)^2} dz$ where <i>C</i> is the circle $ z-1 = 2$	7	MAY 2019
12	Evaluate $\int_0^{2+i} (\overline{z})^{2 dz}$ along (i) the real axis to 2 and then vertically to 2 + <i>i</i> . ii) the line $2y = x$.	8	MAY 2019
	Module IV		
1	Module IV Define three types of isolated singularities with an example for each	7	DEC2016
1 2	Module IVDefine three types of isolated singularities with an example for eachDetermine the nature and type of singularities ofi) $\frac{e^{-z^2}}{z^2}$ ii) $\frac{1}{z}$	7 7	DEC2016 MARCH 2017
1 2 3	Module IVDefine three types of isolated singularities with an example for eachDetermine the nature and type of singularities of i) $\frac{e^{-z^2}}{z^2}$ ii) $\frac{1}{z}$ Use Residue theorem to evaluate $\int_c \frac{30z^2-23z+5}{(2z-1)^2(3z-1)} dz$ where c is $ z = 1$	7 7 7	DEC2016 MARCH 2017 MARCH 2017
1 2 3 4	Module IVDefine three types of isolated singularities with an example for eachDetermine the nature and type of singularities of i) $\frac{e^{-z^2}}{z^2}$ ii) $\frac{1}{z}$ Use Residue theorem to evaluate $\int_c \frac{30z^2-23z+5}{(2z-1)^2(3z-1)} dz$ where c is $ z = 1$ Evaluate $\int_0^\infty \frac{1}{(1+x^2)^2} dx$ using residue theorem	7 7 7 8	DEC2016 MARCH 2017 MARCH 2017 MARCH 2017
1 2 3 4 5	Module IVDefine three types of isolated singularities with an example for eachDetermine the nature and type of singularities of i) $\frac{e^{-z^2}}{z^2}$ ii) $\frac{1}{z}$ Use Residue theorem to evaluate $\int_c \frac{30z^2 - 23z + 5}{(2z-1)^2(3z-1)} dz$ where c is $ z = 1$ 1Evaluate $\int_0^{\infty} \frac{1}{(1+x^2)^2} dx$ using residue theoremDetermine and classify the singular points for the following functionsi) $f(z) = \frac{sin z}{(z-\pi)^2}$ ii) $g(z) = (z+i)^2 e^{\frac{1}{z+i}}$	7 7 7 8 7	DEC2016 MARCH 2017 MARCH 2017 MARCH 2017 MARCH 2017 APRIL 2018
1 2 3 4 5 6	Module IVDefine three types of isolated singularities with an example for eachDetermine the nature and type of singularities of i) $\frac{e^{-z^2}}{z^2}$ ii) $\frac{1}{z}$ Use Residue theorem to evaluate $\int_c \frac{30z^2-23z+5}{(2z-1)^2(3z-1)} dz$ where c is $ z = 1$ 1Evaluate $\int_0^{\infty} \frac{1}{(1+x^2)^2} dx$ using residue theoremDetermine and classify the singular points for the following functionsi) $f(z) = \frac{sin z}{(z-\pi)^2}$ ii) $g(z) = (z+i)^2 e^{\frac{1}{z+i}}$ Evaluate $\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^3} dx$	7 7 7 8 7 8 8	DEC2016 MARCH 2017 MARCH 2017 MARCH 2017 APRIL 2018
1 2 3 4 5 6 7	Module IVDefine three types of isolated singularities with an example for eachDetermine the nature and type of singularities of i) $\frac{e^{-z^2}}{z^2}$ ii) $\frac{1}{z}$ Use Residue theorem to evaluate $\int_c \frac{30z^2-23z+5}{(2z-1)^2(3z-1)} dz$ where c is $ z = 1$ Evaluate $\int_0^{\infty} \frac{1}{(1+x^2)^2} dx$ using residue theoremDetermine and classify the singular points for the following functionsi) $f(z) = \frac{sin z}{(z-\pi)^2}$ ii) $g(z) = (z+i)^2 e^{\frac{1}{z+i}}$ Evaluate $\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^3} dx$ Evaluate $\int_{-\infty}^{\infty} \frac{tan z}{z^2-1} dz$ counter clockwise around c $: z = \frac{3}{2}$ usingCauchy's Residue theorem	7 7 7 8 7 8 7 8 7	DEC2016 MARCH 2017 MARCH 2017 MARCH 2017 APRIL 2017 APRIL 2018 APRIL 2018
1 2 3 4 5 6 7 8	Module IVDefine three types of isolated singularities with an example for eachDetermine the nature and type of singularities of i) $\frac{e^{-z^2}}{z^2}$ ii) $\frac{1}{z}$ Use Residue theorem to evaluate $\int_c \frac{30z^2 - 23z + 5}{(2z-1)^2(3z-1)} dz$ where c is $ z = 1$ 1Evaluate $\int_0^{\infty} \frac{1}{(1+x^2)^2} dx$ using residue theoremDetermine and classify the singular points for the following functionsi) $f(z) = \frac{\sin z}{(z-\pi)^2}$ ii) $g(z) = (z+i)^2 e^{\frac{1}{z+i}}$ Evaluate $\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^3} dx$ Evaluate $\int_{-\infty}^{\infty} \frac{\tan z}{z^2-1} dz$ counter clockwise around c $: z = \frac{3}{2}$ usingCauchy's Residue theoremUsing contour integration evaluate $\int_{-\infty}^{\infty} \frac{x^2-x+2}{x^4+10x^2+9} dx$	7 7 7 8 7 8 7 7 7	DEC2016 MARCH 2017 MARCH 2017 MARCH 2017 MARCH 2017 APRIL 2018 APRIL 2018 APRIL 2018 JULY 2017
1 2 3 4 5 6 7 8 9	Module IVDefine three types of isolated singularities with an example for eachDetermine the nature and type of singularities of $i)\frac{e^{-z^2}}{z^2}$ ii) $\frac{1}{z}$ Use Residue theorem to evaluate $\int_c \frac{30z^2 - 23z + 5}{(2z-1)^2 (3z-1)} dz$ where c is $ z = 1$ 1Evaluate $\int_0^{\infty} \frac{1}{(1+x^2)^2} dx$ using residue theoremDetermine and classify the singular points for the following functionsi) $f(z) = \frac{\sin z}{(z-\pi)^2}$ ii) $g(z) = (z+i)^2 e^{\frac{1}{z+i}}$ Evaluate $\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^3} dx$ Evaluate $\int_{-\infty}^{\infty} \frac{\tan z}{z^2-1} dz$ counter clockwise around $c: z = \frac{3}{2}$ usingCauchy's Residue theoremUsing contour integration evaluate $\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx$	7 7 7 8 7 8 7 7 7 7	DEC2016 MARCH 2017 MARCH 2017 MARCH 2017 MARCH 2017 APRIL 2018 APRIL 2018 JULY 2017 JULY 2017 MAY2019
1 2 3 4 5 6 7 8 8 9 10	Module IVDefine three types of isolated singularities with an example for eachDetermine the nature and type of singularities of $i)\frac{e^{-z^2}}{z^2}$ ii) $\frac{1}{z}$ Use Residue theorem to evaluate $\int_c \frac{30z^2 - 23z + 5}{(2z-1)^2(3z-1)} dz$ where c is $ z = 1$ 1Evaluate $\int_0^{\infty} \frac{1}{(1+x^2)^2} dx$ using residue theoremDetermine and classify the singular points for the following functionsi) $f(z) = \frac{sin z}{(z-\pi)^2}$ ii) $g(z) = (z+i)^2 e^{\frac{1}{z+i}}$ Evaluate $\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^3} dx$ Evaluate $\int_{-\infty}^{\infty} \frac{tan z}{x^2-1} dz$ counter clockwise around c : $ z = \frac{3}{2}$ usingCauchy's Residue theoremUsing contour integration evaluate $\int_{-\infty}^{\infty} \frac{x^2-x+2}{x^4+10x^2+9} dx$ Evaluate $\int logzdz$ where C is the circle $ z = 1$ Evaluate $\int 1/(5-3sin\theta)d\theta$	7 7 7 8 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8	DEC2016 MARCH 2017 MARCH 2017 MARCH 2017 MARCH 2017 APRIL 2018 APRIL 2018 APRIL 2018 JULY 2017 MAY2019 MAY2019
1 2 3 4 5 6 7 8 8 9 10 11	Module IVDefine three types of isolated singularities with an example for eachDetermine the nature and type of singularities of $i)\frac{e^{-z^2}}{z^2}$ ii) $\frac{1}{z}$ Use Residue theorem to evaluate $\int_c \frac{30z^2-23z+5}{(2z-1)^2(3z-1)} dz$ where c is $ z = 1$ 1Evaluate $\int_0^{\infty} \frac{1}{(1+x^2)^2} dx$ using residue theoremDetermine and classify the singular points for the following functionsi) $f(z) = \frac{sin z}{(z-\pi)^2}$ ii) $g(z) = (z+i)^2 e^{\frac{1}{z+i}}$ Evaluate $\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^3} dx$ Evaluate $\int_{-\infty}^{\infty} \frac{tan z}{z^2-1} dz$ counter clockwise around c $: z = \frac{3}{2}$ usingCauchy's Residue theoremUsing contour integration evaluate $\int_{-\infty}^{\infty} \frac{x^2-x+2}{x^4+10x^2+9} dx$ Evaluate $\int logzdz$ where C is the circle $ z = 1$ Evaluate $\int 1/(5-3sin\theta) d\theta$ Find all singular points and residues of the functions(a) f(z) = $(z-sinz)/z^2$ (b) f(z) = tanz	7 7 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8	DEC2016 MARCH 2017 MARCH 2017 MARCH 2017 APRIL 2018 APRIL 2018 APRIL 2018 JULY 2017 MAY2019 MAY2019 MAY2019

	Module V		
1	Solve by Gauss elimination method:	5	MARCH2017
	$X_1 - x_2 + x_3 = 0$		
	$-x_1+x_2-x_3=0$		
	10x ₂ +25x ₃ =90		
	$20x_1+10x_2 = 80$		
2	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 4 \end{bmatrix}$	5	DEC 2016
	column space		
		_	
3	Solve using Gauss elimination method:	6	MARCH2017
	y+z-zw =0		
	2X-3y-5z+0W = 2		
1	4X+y+z-zw -4	C	
4	$\mathbb{T}_{3}^{2} = 0$	0	WARCH2017
	matrix -6 42 24 54		
5	$\begin{bmatrix} 2 & -2 & 0 \\ 0 & -4 & 0 \end{bmatrix}$	8	MARCH2017
	Find the basis for the null space of $\begin{bmatrix} 0 & 4 & 8 \\ 2 & 0 & 4 \end{bmatrix}$		
6	Are the vectors (31.4) (6.7.5) and (9.6.9) are linearly dependent or	5	MARCH2017
	independent Justify vour answer.	-	
	····· , , ,		
7	.Are all vectors (x,y,z) in R^3 with y -x+ z =0 form a vector space over the	5	MARCH2017
	field of real numbers? Justify your answer.		
8	Solve using gauss elimination method:		
	3x+3y+2z=1,x+2y=4,10y+3z=-2,2x-3y-z=5	8	APRIL2018
9	Prove that the vectors (1,1,2),(1,2,5),(5,3,4) are linearly dependent	6	
			APRIL2018
10	Prove that the set of vectors $V=\{(v_1,v_2,v_3) \in \mathbb{R}: -v_1+v_2+4v_3=0\}$ a vector		
	space over the field \mathbb{R} . Also find the dimension and the basis	6	APRIL2018
11	Find the values of a and b for which the system of linear equations	7	MAY2019
	x + 2y + 3z = 6, $+ 3y + 5z = 9$, $2x + 5y + az = b$ has (i) no solution		
4.2	(ii) a unique solution (iii) infinitely many solutions		
12	Solve the system of equations by Gauss Elimination Method:	8	MAY2019
	3x + 3y + 2z = 1, x + 2y = 4,10y + 3z = -2, 2x - 3y - z = 5		
1		10	DEC 2016
T	Diagonalize the matrix $A = -6$ 7 -4	10	DEC 2016
2		7	JULY2017
	If 2 is an eigen value of $\begin{vmatrix} -1 & 5 & -1 \end{vmatrix}$ without using its characteristic		
	$\begin{bmatrix} 1 & -1 & 3 \end{bmatrix}$		
	54 A-31 and Adi A		
	, ארק אר או אווע הען ה		
3	What kind of conic section or pair of straight line is given by the quadratic	6	DEC 2016
-	form	-	
	$3x^2+22xy+3y^2 = 0$ express $(x,y)^T$ in terms of new coordinates.		

4	Find out what type of conic section the quadratic form $Q=17x^2-30xy+17y^2$ =128 represents and transform it to the principal axis	10	DEC 2016
5	Dioganalize the matrix $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ hence find A^4	8	MARCH 2017
6	Determine whether the matrix is orthogonal $\begin{bmatrix} 1 & 0 & -0 \\ 1 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$	5	DEC 2016
7	Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	10	MARCH 2017
8	What kind of conic section is given by the quadratic form $7x_1^2+6x_1x_2+7x_2^2=200$. Also find its equation	6	APRIL2018
9	Find the basis of null space of A= $\begin{bmatrix} 2 & -2 & 0 \\ 0 & 4 & 8 \\ 2 & 0 & 4 \end{bmatrix}$	6	MARCH 2017
10	Reduce to echelon form and hence find the rank of the matrix $A = \begin{bmatrix} 3 & 0 & 2 \\ -6 & 42 & 24 \\ 21 & -21 & 0 \end{bmatrix}$	7	MARCH 2017
11	Diagonalize the matrix $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$	12	APRIL 2018
12	Diagonalize the matrix $\begin{bmatrix} -1 & 2 & -2 \\ 2 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix}$	8	MODEL QUESTION

QUESTION BANK

Subject: Circuits and Networks (EE 201)

Sl	Question	Marks	
No.			
	Module 1		
1	Using Super position Theorem determine the voltage V_2 for the circuit shown	5	KTU Jan 2017
2	Use Thevenin's Theorem to find the voltage across 3Ω resistor in Fig	10	KTU Jan 2017
3	For the circuit shown, determine the load current I_L by using Norton's theorem. $j_{3\Omega}$ $-j_{2\Omega}$ $I_{0 \neq 0^{\circ}} v - 0$ $I_{0 \neq 0^{\circ} v - 0} v - 0$ $I_{0 \neq 0^{\circ} v$	10	KTU Jan 2017

	Module 2		
1	Obtain basic cutset matrix for the network graph shown in figure and write down the network equations. Take 1,2,3 as tree branches.	5	KTU Jan 2017

Module 3				
1	What is the difference between transient analysis and steady state analysis of electrical network. Explain with suitable example	5	KTU 2017	Jan
2	In a series RLC circuit with $R = 4\Omega$, $L = 1H$ and $C = 0.25F$, a unit step voltage is applied at $t = 0$. Find the expression for the current in the circuit at $t > 0$.	5	KTU 2018	Dec
3	The switch in the circuit of Fig.5 is moved from position 1 to position 2 at t = 0. Determine vc(t). $100 V - \frac{5 k\Omega}{29} + \frac{1}{50 V} + \frac{1}{v_c(t)} + 1 \mu F$ Fig.5	10	KTU 2018	Dec
4	In the network shown in Fig.6 the switch is opened at $t = 0$. Find i(t) $36 \sqrt{-10 \Omega}$ $3 \Omega = 6 \Omega$ 0.1 H = i(t)	10	KTU 2018	Dec
5	Find $V_C(t)$ & $I_L(t)$ in the circuit shown below, assuming zero initial conditions. (Use nodal Analysis)	10		

	I. (t)			
	$\delta(\mathbf{t}) \begin{pmatrix} \mathbf{h} \\ \mathbf{h}$			
6	An RL series circuit is excited by sinusoidal voltage $v(t)=V_m \sin (wt+\phi)$.	10	KTU	Jan
	Derive an expression for the current in the circuit. Discuss the factors which		2017	
	govern the maximum value and rate of decay of transient component of			
	current.			
7	In the given circuit, capacitor C has an initial voltage $Vc(0) = 10$ V and at	10	KTU	Jan
	the same instant, current in the inductor is zero. Switch k is closed at time t		2017	
	= 0. Obtain expression for voltage across the inductor L.			
	$10V \stackrel{+}{=} 1F \qquad \frac{1}{4}\Omega \stackrel{\bullet}{\geq} v(t) \stackrel{\bullet}{\otimes} 1/3^{H}$			
8	Find the response i(t) in a series RLC circuit when a step input of V volts is	10		
	applied across it at time t= 0.Assumeall initial conditions as zero.			

	Module 4			
1	Write the mesh equations in s-domain for the network of figure, when a 10 V source is switched on. The primary and secondary self-inductances are $L1 = L2 = 1$ H and M =0.5 H. V = I = I + I + I + I + I + I + I + I + I	5	KTU 2017	Jan
2	Explain how the conductively coupled equivalent circuit of a given magnetically coupled circuit can be derived.	5	KTU 2018	Dec

3	Figure.7 shows a network with mutual coupling. Find the current in the 10Ω	10	KTU	Dec
	resistance. Assume that inductors have negligible resistance		2018	
	100			
4	In the given circuit shown in fig.(7), the switch is closed to position 1 at $t=0$	10	KTU	Dec
	and after a time equal to one time constant it is moved to position 2. Find		2017	
	the expression for current after moving to position 2. Assume zero initial			
	charge on the capacitor. (Use Laplace transform technique)			
	S			
	500Ω			
	100 V — 100 V			
	20μF			
5	Find the voltage across the 5 Ω resistor in the circuit shown in fig.	10	KTU	Dec
	K=0.5		2017	
	j2Ω j1 Ω			
	•mm•_			
	$10 L0 \lor + -i3\Omega \ge 5\Omega$			
6		10		T
6	In the circuit shown in figure, draw the transformed circuit and determine the current i2(t) using much englying. Accurre the initial and difference	10	KTU 2017	Jan
	the current 12(t) using mesh analysis .Assume the initial conditions as zeros.		2017	

	Module 5			
1	The ABCD parameters of a two port network are A=3, B=160, C=0.05, $D=3$ Find the equivalent T and II network	5		
	D=3. Find the equivalent 1 and 11 network.			
2	Determine the h-parameters of the network shown in figure below and hence		KTU	Jan
	check whether the network is symmetrical.		2017	

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
3	What are T parameters? Express T parameters in terms of Y parameters	5	
4	Explain the symmetry and reciprocity property of a two port network. State the conditions for them in terms of different parameters.	5	
5	For the network shown in figure(13),find a)z-parameters and b) ABCD $\downarrow I_1 \\ \downarrow I_2 \\ \downarrow I_1 + I_2 \\ V_1 \\ 1 \\ l \\ V_2 \\ l \\ l \\ V_2 \\ l \\ l \\ l \\ l \\ V_2 \\ l \\ $	10	KTU July 2017
6	Determine hybrid parameters for the network shown in Fig. below $\downarrow 1 \\ \downarrow 2 \\ \Omega \\ \downarrow 1 \\ \downarrow 2 \\ \Omega \\ \downarrow 1 \\ \downarrow 2 \\ \square \\ \square \\ \downarrow 2 \\ \square \\$	10	KTU July 2019
7	For the network shown in figure, determine driving point admittance Y11(s) at port 1 and transferadmittanceY21(s).	10	KTU Dec 2018

Module 6			
1	a) Check whether the given polynomial $P(s)=s3+3s2+6s+18$ is Hurwitz or not.	10	
	b) Write down the properties of the driving point impedance function of RL networks.		
2	A) What are positive real functions? What are the necessary conditions to be satisfied	10	KTU
	by a driving point function to be positive real?		July
	B) Test whether the following represents LC driving point immittance function.		2017
	$3(s^2+1)(s^2+9)$		
	$F(s) = \frac{1}{s(s^2 + 3)}$		
		10	
3	Find the Cauer I and II forms of the RL impedance function $Z(s) =$	10	KTU
	$\frac{2(s+1)(s+3)}{2(s+1)(s+3)}$		Dec 2018
	(s+2)(s+6)		2018
		10	
4	a) Show that the overall admittance parameter matrix for parallel connected two	10	KTU
	port network is the sum of admittance parameters of each individual two port		Dec
	network in parallel		2018
	b) Symphonize the network function $Z(s) = \frac{(s^2 + 1)}{s}$ in Factor I form		
	Synthesize the network function $Z(s) - \frac{1}{s(s^2+2)}$ in Poster 1 form.		
5	a) Differentiate between network analysis and synthesis.	10	KTU
	b) Realize the given impedance function $Z(s)$ as a First Foster form		July
	$Z(s) = \frac{s^2 + 4s + 3}{s^2 + 6s + 8}$		2018

6	Obtain the Foster I and II forms of a network whose driving point function is given	10	
	as		
	7() - 4(-2+4)		
	$Z(s) = \frac{4s(s^{-}+4)}{(s^{-}+1)^{2}+1(s)}$		
	(s + 1/s + 16)		
7	a) Explain the properties of a positive real function	10	KTU
,	 b) Describe the properties of a positive real function in First. 	10	Daa
	b) Describe the procedure of synthesizing the positive real function in First		Dec
	Cauer form of LC network.		2018
8	Realize the Foster & Cauer forms of the following impedance function	10	
	$4(s^2+1)(s^2+9)$		
	$Z(s) = \frac{1}{2} \frac{1}{$		
	$S(5^{-}+4)$		
9	Check whether the polynomial $F(s) = s^4+3s^3+4s^2+3s+1$ is Hurwitz	5	KTU
			July
			2017
			_01/

	ANALOG ELECTRONIC CIRCUITS (EE203)	Marks	KTU (Month/Vear)
	MODULE I		(Monthy real)
1	1. Draw the dc and ac load lines for the transistor circuit. Given $R_1=18K\Omega$, $R_2=8.2K\Omega$, $R_C=2.2K\Omega$, $V_{cc}=20V$, $R_E=2.7K\Omega$.	5	KTU JAN 17
	$R_{1} + VCC$ $R_{1} + CC$ $R_{2} + CC$		
2	Why is voltage divider bias relatively stable against changes in h_{fe} ? ii) Design voltage	5	KTU JAN2017
	divider bias circuit to operate from a 12V supply. The bias conditions are		
	$V_{CE}=3V, V_{E}=5V \text{ and } I_{c}=1\text{mA} $ (5)		
	$\downarrow^{I1} \begin{array}{c} R_1 \\ I_2 \\ R_2 \\ R_2 \\ R_3 \\ R_4 \\ R_4 \\ R_6 $		
3	a) A transistor used in CE connection has the following set of h parameters when the d.c.	5	KTU JAN2017
	operating point is $V_{CE} = 5V$ and $I_C = 1$ mA; $h_{ie} = 1700 \Omega$; $h_{re} = 1.3 \times 10-4$; $h_{fe} = 38$;		
	$h_{oe} = 6 \times 10^{-5}$ O. If the a.c. load r_L seen by the transistor is 2 K Ω , find (i) the input		
Δ	a) Explain any compensation technique adopted in transistor amplifier for reducing the	5	ΚΤΙΙ ΙΔΝΙ 17
	drift of operating point. (5)		
5	Sketch a combinational clipper circuit. Explain its working.	5	KTU July 17
6	What factors are to be considered for selecting the operating point Q for an amplifier?Draw a voltage divider bias circuit and derive the equations of voltage	10	KTU July 17

	and current at input and output terminals.		
7	Derive the equation for voltage gain and current gain for a BJT using approximate	6	KTU July 17
	h parameter model for Common Emitter configuration.		
8	A CE amplifier has the h-parameters given by $h_{ie} = 1000\Omega$, $h_{re} = 2 \ge 10$ -4, $h_{fe} = 50$,	5	KTU July 17
	$h_{oe} = 25\mu \mathcal{O}$. If both the load and source resistances are 1k Ω , determine the (a)		
	currentgain and (b) voltage gain.		
9	With a neat circuit diagram explain the working of a negative voltage clamping	5	KTU Dec 17
	circuit. Also sketch the output waveform for $\pm 5V$ square wave input.		
10	Design a voltage divider bias circuit to operate from a 18V supply in which bias	10	KTU Dec 17
	conditions are to be $V_{CE} = V_E = 6 V$ and $I_C = 1.5 mA$. $\beta = 90$. Also calculate the		
	stability factor S.		
11	Explain the operation of a Zener voltage regulator with a neat circuit diagram.	5	KTU Dec 17
12	Draw the circuit of a simple zener voltage regulator and design thevalue ofseries	5	KTU DEC
	resistor RS for a load voltage of 12V. Given RL= 500 Ω , Izmax= 80 mA, Izmin =		2018
	10 mA,Vinmin= 15V, Vinmax =18 V.		
13	a) Draw and explain the h parameter small signal low frequency model for BJT.	4	KTU DEC
	b) Derive the expressions for current gain, input impedance, voltage gain and	6	2018
	output impedance using h parameters of BJT.		

MODULE II

1	Why does gain of amplifier falls off at low and high frequencies?	5	
2	a) Parameters of FET used in amplifier circuits are g_m =4.2 m \overline{U} and r_d =30K Ω . Assume C to be short circuit for signal frequency, given a small signal model for the amplifier. Determine small signal voltage gain if R_D =6.8K Ω , R_G = 1M Ω and R_S =10 K Ω . $ \begin{array}{c} $	10	KTU Jan 17
3	Compare JFET with MOSFET.why the gate function of FET is always RB? List the parameters of JFET from characterestics.	8	KTU Jan17
4	The datasheet of an N-channel JFET gives the following details $I_{Dss} = 9$ mA and pinch off voltage of -4.5V i) At what value of V _{GS} will I _D be equal to 3 mA? ii) What is its g_m at this I_D ? (5)	5	KTU Jan 17
5	How does the constructional feature of a MOSFET differ from that of a JFET?	10	KTU July 17
6	Draw a common source FET amplifier. Using small signal equivalent circuit derive the expression of the voltage gain.	6	KTU Dec 17

7	Define Miller's theorem. In a CE amplifier circuit, $h_{fe}=50$, $h_{ie}=1.3k\Omega$, $C_{bc}=5pF$, $R_{C}=3k\Omega$, $R_{L}=2.2$ k Ω . Calculate the Miller capacitance.	6	KTU Dec 17
8	Explain the construction and operation of Enhancement type metal oxide semiconductor FET with neat diagrams.	5	KTU Dec 17
9	Explain the drain characteristics of JFET and mark the pinch-off voltage.	6	KTU July 17
10	a) Draw and explain small signal model of FET. b) Obtain the operating point set by the voltage divider bias circuit for an NPN CE transistor with $\beta = 50$ and VBE = 0.7 V. Given VCC = 18 V, R1 = 82k\Omega, R2 = 22k\Omega, RC = 5.6k\Omega and RE = 1.2k\Omega	4 6	KTU DEC 2018
11	Explain the construction, biasing, operation and characteristics of JFET	10	KTU DEC 2018

MODULE III

1	Differentiate between positive and negative feedback. Explain how does the	5	KTU July
	negative feedback modify the gain of an amplifier.		1/
2	Draw the circuit of a Two Stage RC- Coupled amplifier and explain its working	1	KTU July
	and advantages.	0	17
3	Derive the equation for power output and conversion efficiency of a class A	1	KTU July
	series fed amplifier.	0	17
4	In an amplifier open loop gain changes by $\pm 50\%$ using a series voltage negative	5	KTU Dec
	feedback. The amplifier is to be modified to get a gain of 100 with $\pm 0.1\%$		17
	variation. Find the required open loop gain of the amplifier and the amount of		
	negative feedback.		
5	Draw the circuit diagrams of two stage RC coupled and Transformer coupled	5	KTU Dec
	amplifiers. Discuss the important features and applications of both.		17
6	A transformer coupled class A power amplifier draws a current of 250mA from	4	KTU Dec
	a		17
	collector supply of 13 V. When no signal is applied to it determine i) Maximum		
	output power ii) Power rating of the transistor iii) Maximum collector		
	efficiency.		
7	List the characteristics of an amplifier that get modified by negative feedback	5	кти
,	List the characteristics of an amplifier that Set moundary negative recasada	5	lan2017
8	For a class B power amplifier using a supply of Vcc =12V and driving a load of 8Ω ,	5	KTU
-	Determine maximum load neuror DC input neuror and collector officiancy (5)	•	Jan2017
	Determine maximum load power. DC input power and conector efficiency. (5)		
9	Compare the merits and demerits of different types of inter stage coupling in amplifiers	3	KTU
			Jan2017
10	What is cross over distortion? Why most power amplifiers used in practice are designed	2	KTU Jan17
	to operate in class $A \mathbf{P}$ stage? (2)		
	(2)		
11	For class B power amplifier using a supply of Vcc=12V and driving a load of 8Ω ,	6	KTU Jan17
	determine maximum load power, DC input power and collector efficiency.		

12	Draw the frequency response characteristics of RC coupled amplifier and	5	KTU
	explain the reasons behind its shape		DEC2018
13	List out the merits and demerits of negative feedback on amplifier	5	KTU
	performance		DEC2018
14	a) With necessary diagrams explain the working of class A transformer coupled	8	KTU
	amplifier and obtain the maximum overall efficiency.	2	DEC2018
	b) What are its advantages and disadvantages		

MODULE IV

1	a) What are the modes in which an op-amp can be operated?	5	KTU
	b) An op-amp has a gain bandwidth product of 15 MHz. Determine the		Jan2017
	bandwidth of op-amp when A_{cL} =500. Also find maximum value of A_{CL} when		
	frequency is 200 KHz.		
2	a) A differential amplifier has inputs $V_{S1} = 10 \text{mV}$ and $V_{S2} = 9 \text{mV}$. It has differential mode	2	KTU
	gain of 60 dB and a CMRR of 80 dB. Find the percentage error in output and error		Jan2017
	voltage. (2)		
3	State the Barkhausen criterion for sinusoidal oscillators and why this must be	3	KTU
	fulfilled to sustain oscillations? (3)		Jan2017
4	An inverting op-amp with slew rate $0.5V/\mu$ sec is shown in the figure. Determine i) closed	10	KTU
	loop voltage gain ii) input impedance of the circuit iii) Maximum operating frequency		Jan2017
	10KΩ - + - - - - - - - - - - - - -		
5	Write short notes on the following:	10	KTU July
	b) Slew rate		1/
	c) Common mode gain		
	d) Differential mode gain		
6	With a neat diagram explain the working of a Hartley oscillator.	8	KTU Dec2017
	A Wien bridge oscillator has the following components $R_1 = R_2 = R_4 = 5.6 \text{ k}\Omega$. $R_3 =$	2	KTU
	12 k Ω and $C_1 = C_2 = 2000 \text{pF}$. Calculate the oscillating frequency.		Dec2017
7	Derive the expression for voltage gain of a dual input balanced output differential	10	KTU
	amplifier. Why open loop op amp configurations are not used for linear		Dec2017

	applications?		
8	Explain Barkhausen criteria of sustained oscillation	5	KTU
			July17
9	Compare the characteristics of ideal Op-Amps and practical Op-Amps	5	KTU
			DEC2018
10	a) Compare different types of multistage amplifiers.	5	KTU
	b) With a neat circuit diagram explain the operation of Colpitt's oscillator using	5	DEC2018
	BJT		
11	a) Define the following terms i) CMRR ii) Slew rate iii) Input bias current	8	KTU
	(iv) Input offset voltage	2	DEC2018
	b) Give the typical values of above parameters for 741 IC		
12	a) Explain the operation of Op-Amp integrator and differentiator circuits.	6	KTU
	b) Explain the working and design of a triangular wave generator circuit with	4	DEC2018
	necessary diagrams		

MODULE V

1	Design an adder circuit to get the output expression as $V_0 = -[0.1 V_1 + V_2 + 10 V_3]$	5	KTU Jan2017
	where V_1 , V_2 and V_3 are the inputs to the Op-amps.		
2	What are the limitations of an ideal integrator? Design a circuit which overcome the errors	5	KTU Jan2017
	of ideal integrator.		
3	What is a zero crossing detector? An inverting amplifier using the 741 IC must have	10	KTU July 17
	a flat response up to 40KHZ. The gain of the amplifier is 10. What maximum peak		
	to peak input signal can be applied without distorting the output?		
4	Draw the inverting and non-inverting amplifier circuits of an OP-AMP in closed –	10	KTU July 17
	loop configuration. Obtain the expressions for the closed loop gain in these circuits.		
5	Draw the circuit of a Half Wave Precision Rectifier circuit and Explain its	10	KTU July 17
	operation.		
6	Derive the expression for voltage gain of a non-inverting amplifier. Design a three	10	KTU
	input summing amplifier using op-amp having gains of 2,3 and 5 respectively for		Dec2017
	each input.		
7	Draw and explain the operation of a square waveform generator using opamp.	5	KTU
			Dec2017
8	Explain the working of Instrumentation amplifier with a neat diagram.	5	KTU
			Dec2017
9	1) Share have a last in a static second last of far an illater at hiliartian	6	KTU Jan2017
	b) Snow now piezo-electric crystals are employed for oscillator stabilization.		
10	A crystal has the following parameters $L = 0.33H, C_1 = 0.065pF, C_2 = 1.0pF$ and	6	KTU Jan2017
	R=5.5K Ω . Determine series resonant frequency and Q factor of the crystal.		
11	What are the advantages and features of instrumentation amplifier? Derive the expression	5	KTU Jan2017
	for output voltage of instrumentation amplifier. (5)		
12	Draw the circuit of an inverting amplifier and obtain the expression for its closed	5	KTUDEC2018
1	loop gain		

13	a) What are the features of instrumentation amplifier? Derive the expression for	6	KTUDEC2018
	output voltage of an instrumentation amplifier.		
		4	
	b) Design the feedback circuit of a Wein Bridge oscillator with 2MHz output		
	frequency.		

MODULE VI

1	With the help of internal functional diagram, explain how a monostable multivibrator	10	KTU July 17
	works with use of 555 timer.		
2	Explain the operation of a triangular wave generator. Design a phase shift oscillator so	10	KTU July 17
	that fo=200 Hz.		
3	Define slew rate and explain its effect on waveform generation.	5	KTU Dec17
4	Design a phase shift oscillator to have 1.5kHz output frequency using a 741 opamp	6	KTU July 17
	with $Vcc = \pm 12$ V.		
5	Draw and explain the operation of a square waveform generator using opamp.	5	KTU Dec 17
6	Draw and explain the circuit of IC 555 in Monostable mode with relevant	10	KTU Dec 17
	waveforms.		
7	What are the advantages of crystal oscillators	2	KTU Dec 17
8	In an astable multivibrator using 555, $R_B = 750 \Omega$. Determine the values of R_A	7	KTU Dec 17
	and C to generate a 1.0 MHz clock that has a duty cycle of 25%.		
9	a) Draw the circuit diagram of an astable-multivibrator using 555 timer to generate the	5	KTU Jan17
	output signal with frequency 2 KHz and duty cycle of 75 %. (5)		
10	a) Design a Wein bridge oscillator circuit to produce a 100KHz, ± 9Voutput. Design	5	KTU Jan17
	amplifier to have closed loop gain of 3. Jweb.com (5)		
11	What is the basic principle of RC oscillators?Design a phase shift oscillator to oscillate	5	KTU Jan2017
	at 500Hz.		
12	Draw the Schmitt trigger circuit and determine the threshold voltages VUT and VLTin	5	KTUDEC2018
	a circuit with two resistors $18k\Omega$ and $1k\Omega$, Vref = 4V, and saturation voltage = $\pm 15V$		
13	With necessary diagrams explain the operation of OP-Amp square wave generator	5	KTUDEC2018
14	Explain the operation of Op-Amp crystal oscillator	5	KTUDEC2018
15	With the help of internal circuit diagram of IC555 explain the operation of astable	10	KTUDEC2018
	multivibrator. Derive the expression for frequency of oscillation		

Subject: DC Machines & Transformers

Module 1					
SI. No	Questions	Marks	KU/KTU (Month/Year)		
1	Draw the developed view of a double layer lap winding of a 4 pole 12 slot armature. Commutator and brushes need not be drawn.	10	DEC 2018		
2	Draw the developed view of mmf and flux distribution of a loaded 2 pole machine.	10	DEC 2018		
3	Point out the necessity of equalizer rings in a lap wound dc machine. Why this is not applicable in wave wound machines	5	APRIL 2018		
4	For a 6 pole DC armature with 16 slots having two coil sides per slot and single turn coils, calculate the relevant pitches for a wave winding and draw the developed winding diagram.	10	APRIL 2018		
5	Draw the developed winding layout of a lap connected simplex double layer DC armature with 16 slots and 4 poles. Furnish the winding table and show connections to 4 equalizer rings.	5	KTU		
6	Draw the magnetization characteristic of self-excited DC shunt generator and explain	5	KTU		
7	Give the constructional features and working principle of a DC generator. Draw the cross-sectional view of a 4 pole DC generator and label all the parts. Explain the function of each part.	10	КТU		
8	For a 6 pole DC armature with 16 slots having two coil sides per slot and single turn coils, calculate the relevant pitches for a wave winding and draw the developed winding diagram	10	KTU		
	Module 2				

1	The armature of a 250 V, 10kW, 4 pole lap connected	5	DEC 2018
	generator was Reconnected in wave. Find the new voltage,		
	current and power ratings.		
3	The table shows OCC of a dc shunt generator at a speed 1000		DEC 2018
	rpm. What is the residual voltage? Find the critical		
	resistance. Also find the maximum voltage build up at 1000	10	
	rpm and critical speed for a field resistance of 300 Ω . (You	10	
	can find the answers by carefully observing the table. If		
	necessary you may draw a rough sketch. Graph sheet is not		
	required)		
	If 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1		
	E 10 50 100 150 190 220 245 260 275 285 300		
4	What is armature reaction and how it is eliminated in DC	5	APRIL 2018
	machines		
5	Draw the magnetisation characteristics of a DC shunt	10	APRIL 2018
	machine. Point out the conditions for voltage build- up of a	-	
	DC shunt generator. Give the significance of the terms		
	critical resistance and critical speed as applicable to a DC		
	shunt generator.		
	Shull generatori		
6	A short shunt compound DC generator supplies a current of	10	APRIL 2018
	100A at 220V. If the resistance of the shunt field is 50 Ω , of		
	the series field is 0.02 Ω , of the armature is 0.05 Ω , the iron		
	and friction losses amount to 1KW. Find: i) The generated		
	emf ii) The copper losses iii) Output power of the prime-		
	mover driving the generator iv) The generator efficiency.		
7	What are the effects of armature reaction on the operation of	10	KTU
	dc machine? What are the remedial measures taken to		
	counter effects of armature reaction?		
8	Draw the magnetisation characteristics of a DC shunt	10	KTU
	machine. Point out the conditions for voltage build- up of a		
	DC shunt generator. Give the significance of the terms		

	critical resistance and critical speed as applicable to a DC		
	shunt generator.		
9	A short shunt compound DC generator supplies a current of 100A at 220V. If the resistance of the shunt field is 50 Ω , of the series field is 0.02 Ω , of the armature 0.05 Ω , the iron and friction losses amount to 1KW. Find: i) The generated emf ii) The copper losses iii) Output power of the prime-mover driving the generator iv) The generator efficiency.	10	KTU
10	Define commutation. Explain the process of commutation with neat sketches.	5	KTU
	Module 3	1	
1	Why a starter is required to start a DC motor? What is the essential element of a starter?	5	DEC 2018
2	A 250 V shunt motor has resistances 0.2Ω and 250 Ω . The motor is driving a constant load torque and running at 1000 rpm drawing 10 A current from the supply. Calculate the new speed and armature current if an external armature resistance of value 10 Ω is inserted in the armature circuit. Also find the stalling current. Neglect armature reaction and saturation.	10	DEC 2018
3	During Swinburne's test a 250V DC machine was drawing 3A from the 250V supply. The resistances are 250 Ω and 0.2 Ω . Find the constant loss of the machine. Also find the efficiency of the machine when it is delivering a 20A at 250V.	10	DEC 2018
4	Compare the electrical and mechanical characteristics of a DC shunt motor with those of a DC series motor. Based on this point out the application areas of these motors.	5	APRIL 2018
5	With a neat sketch, explain the working of three-point starter. What is its main drawback? How this is eliminated in four point starters?	10	APRIL 2018

6	With supporting diagrams, show how the retardation test can	6	APRIL 2018
	be employed to find out the various losses occurring in a DC		
	machine		
	A 6 male 250V series motor is were connected. There are 240 slots	10	VTU
/	A 6 pole 250 v series motor is wave connected. There are 240 slots	10	KIU
	and each slot has 4 conductors. The flux per pole is 0.175mWb when		
	the motor is taking 80A. The field resistance is 0.05Ω , the armature		
	resistance is 0.1Ω and the iron and frictional loss is 0.1 kW. Calculate		
	(a) speed (b) BHP (c) shaft torque (d)		
	the pull in newtons at the rim of the pulley of diameter 25cm		
8	Explain with neat sketch how speed control of a dc motor is done.	5	KTU
	Module 4		
1	Draw the phasor diagram of a transformer on no load. Show the two components of the no load current and write their names.	5	DEC 2018
		5	
2	Why transformers are rated in kVA not in KW?	5	DEC 2018
3	Develop the equivalent circuit of a transformer	5	DEC 2018
4	What is the principle of operation of a transformer? Show how the flux is balanced when the transformer is supplying a load.	5	APRIL 2018
5	With supporting phasor diagrams, derive the expression for	5	APRIL 2018
	secondary side voltage regulation of a transformer for lagging and leading power factor loads.		
6	Explain the working principle of 1\u03c6 transformers.	4	APRIL 2018
7	Readings from O.C and S.C test on a 8kVA, 400/200V, 50Hz transformer are	10	APRIL 2018
	OC Test : 200V, 2A, 80W ;meters on low voltage side		

	SC Test : 10V, 20A, 120W; meters on high voltage side		
	Compute equivalent circuit of the transformer as referred to high voltage side.		
	Module 5		
1	What is meant by negative voltage regulation? For what type of load you may get negative voltage regulation?	5	DEC 2018
2	A 1000/800V, 8kVA autotransformer supplies rated current to a load on low voltage side. Draw a schematic diagram and mark input current, output current and current in the section of the winding common to high voltage and low voltage sides	5	DEC 2018
3	Two standard tests were conducted on a 10kVA, 1000/200V transformer. Current in one test was 2A. Voltage in one test was 15V. Power factors were 0.8 and 0.2. Find the efficiency at 90% full load and 0.8 power factor.	10	DEC 2018
4	What are the necessary and desirable conditions for successful parallel operation of two single phase transformers?	5	DEC 2018
5	What are the necessary and desirable conditions to be satisfied for parallel operation of two single phase transformers?	5	APRIL 2018
6	Derive the condition for maximum efficiency for a transformer.	5	APRIL 2018
7	Distinguish between auto transformers and two winding transformers. Derive the expression for saving in copper in an auto transformer	5	APRIL 2018
8	Derive the condition to be satisfied for zero voltage regulation and maximum voltage regulation for a transformer.	5	APRIL 2018
9	Readings from O.C and S.C test on a 8kVA, 400/200V, 50Hz transformer are OC Test : 200V, 2A, 80W ;meters on low voltage side SC Test : 10V, 20A, 120W; meters on high voltage side	15	KTU

	Compute equivalent circuit of the transformer as referred to high voltage side		
	Module 6	I	
1	Find the rated line currents on high voltage and low voltage	5	DEC 2018
	sides of a 500Kva .11kV/400V delta-star transformer.		
2	What is meant by vector group? What is Yd1 vector group?	5	DEC 2018
3	Can a Yd transformer be operated in parallel with a Dy	5	DEC 2018
	transformer? What additional condition is to be satisfied over		
	and above the conditions listed in question		
4	In Scott connection prove that the 3-phase currents will be	10	DEC 2018
	balanced if the 2- phase currents are balanced. Assume upf		
	load.		
		5	
5	Distinguish the vector groupings Yy0, Dd0,Dy1,Yd11 in	5	APRIL 2018
6	three phase transformer connections	E C	
0	phase transformers connected in open delta.	5	APRIL 2016
7	With neat circuit diagram, explain how a two-phase supply	6	APRIL 2018
	can be obtained from a three-phase supply.		
8	Draw the connection diagram for T-T connection of	10	APRIL 2018
	transformers and explain the formation of three phase four		
	wire system with two single phase transformers.		
	Point out its advantages and disadvantages		

Subject: Computer Programming

	Module 1		
SI.	Questions	Marks	KTU
No			(Month/Year)
1	Discuss various datatypes in C with examples	3	JAN 2017
2	What do you understand by the term keyword	2	JAN 2017
3	Differentiate Machine Language, Assembly Language and High Level Language		JAN 2017
4	Write algorithm and draw flowchart to find average height of boys and girls in a class from a given set of student data	10	JAN 2017
5	Compare between compiler and assembler	3	JULY 2017
6	Mention any four keywords and their meaning	2	JULY 2017
7	Draw the flowchart and develop the algorithm for finding area of a triangle by reading three sides	5	JULY 2017
8	Explain different data types in C	5	JULY 2017
9	Differentiate Machine Language, Assembly Language and High Level Language ? What is the difference between compiler and interpreter?		DEC 2017
10	Explain any five kind of operators in C	5	DEC 2017
11	Draw a flowchart to find the sum of digits of an integer	5	DEC 2017
12	What is a compiler? How does it differ from an interpreter?	5	DEC 2018
	Module 2	-	
1	With suitable example discuss the use of break and continue statements	5	JAN 2017

2	Discuss while, do-while and for statement using suitable		JAN 2017
	examples	10	
3	Illustrate syntax of while statement with an example	5	JAN 2017
4	Discuss the break and continue statement in C with an example	5	JULY 2017
5	Write a C program to find sum of digits of an integer, entered through the keyboard	5	JULY 2017
6	Explain syntax of switch statement with example	5	JULY 2017
7	Write a C program to find the sum of all even number between two limits	5	JULY 2017
8	Write a C Program to find LCM and HCF of any two numbers entered by user		DEC 2017
9	Write a C Program to print the prime numbers between 101 and 500. Those numbers whose sum of digits is 5 need not be printed. Use 'while' loop in the program		DEC 2017
10	Explain switch and goto statements in C with the help of examples	5	DEC 2017
11	Write a C program to print the following pattern using for loop * ** *** *** **** ****	5	DEC 2017
12	An electricity company charges people based on the number of units used. Input the number of units and calculate the bill amount and print using C programNo. of units Rate/amount Up to 100 units OtherwiseRs. 1.80/-unitRs. 3.50/- extra per unit	5	DEC 2018

13	Write a short note on array declaration and array initialization		DEC 2018
14	Write a C program to find factorial of given number using recursive function.	5	DEC 2018
	Module 3	-	
1	What do you mean by arrays? How they are initialized with declaration?	5	JAN 2017
2	Write a C Program to sort the values of an array in descending order	10	JAN 2017
3	Write a C Program to find the transpose of a matrix	10	JAN 2017
4	Explain how to initialize a 1D numeric array and character array with examples		JULY 2017
5	Write a C Program to find the transpose of a matrix		JULY 2017
6	Write a C Program to reverse a string		DEC 2017
7	Explain how a 3D array is declared initialized. How is a character	5	DEC 2017
	array different from a string		
8	Write a C Program to count the number of characters, words and lines of a text		DEC 2017
9	Write a C Program to find the product of two matrices	5	DEC 2017
10	Differentiate between ++ i and i ++ with the help of examples		DEC 2018
11	Write a C program to print prime numbers up to N. Draw flow chart also.		DEC 2018
12	To initiate a group activity, a teacher decided to group the whole class of strength 60 into 6 groups according to the following rule Reminder (R) Group	10	DEC 2018

	0	Ι		
	1	II		
	2	III		
	3	IV		
	4	V		
	5	VI		
	Where R is the reminder whe No. by 6. Write a C program group.	en a student divides his/her Roll to list group members of each		
		Module 4		
1	With suitable example expression	plain what you understand by	5	JAN 2017
2	With Dropon oxomplog oxplo	in storage classes in C	5	
2	with Proper examples explai	б	JAN 2017	
3	Differentiate user defined an	d library functions	4	JAN 2017
4	Enumerate three advantages	of using functions	3	JULY 2017
5	What are functions? Explains the different types of functions in details with an example program for each type?		10	JULY 2017
6	Explain storage classes in C	with appropriate examples	10	JULY 2017
7	What are four basic storage	classes in C?	5	DEC 2017
8	Explain the difference betwe reference with help of examp	en pass by value and pass by bles	5	DEC 2017
9	Explain recursive function with help of an example program		5	DEC 2017
	•	Module 5	•	
1	Differentiate between structu	re and union with an example	5	DEC 2017
2	Describe pointer variables		5	JAN 2017
3	Using function write a programmemory locations	am to swap the contents of two	10	JAN 2017

4	What are pointers? Why they are used? Illustrate with an	5	JULY 2017		
	example				
	1				
5	Compare structure and array & explain with an example	10	JULY 2017		
6	Write a C program to sort a set of mark sheets of 6 subjects.	10	JULY 2017		
	Make use of structure to develop the program and hence find				
	the first three rank holders				
		_			
7	Write a C Program to add two variables using pointers	5	DEC 2017		
0	White a C area around to court our array using a pointers		DEC 2017		
0	while a C program to soft an array using pointers	5	DEC 2017		
9	Write a C program to store the name and roll numbers of 10	5	DEC 2017		
	students using structure. The name has to then printed in the	-			
	ascending order of their roll numbers				
10	Differentiate between structure and union with example.	5	DEC 2018		
11	Write a C program to swap the values of two variables using	5	DEC 2018		
	pointer.				
	Module 6	1	I		
1					
1	Explain any three file handling operations in C Programming	5	JAN 2017		
2	Explain how variables are declared in Python	5	JAN 2017		
3	Write a C Program to perform the file handling operation to	10	JAN 2017		
	read series integer number and write all odd number to a file				
	to be called ODD and even numbers to EVEN numbers				
4	Write a python program to make a simple calculator	10	JAN 2017		
5	Give the syntax of fopen and fscanf to read data from a file.	5	JULY 2017		
	Illustrate with an example				
6	Discuss on arithmetic operators in Python. Give one example	5	JULY 2017		
	each				
7	Explain any five file handling functions and illustrate with	5	JULY 2017		
	an example				
8	Explain various data types in Python	5	JULY 2017		
9	Explain how a new file is opened. What are the 3 modes	5	DEC 2017		
	while opening an existing file ?				
10	Write a Python program to reverse a given integer	5	DEC 2017		
11	Write a C Program to copy contents of one file to another	5	DEC 2017		
12	How can a random part in a file can be accessed	5	DEC 2017		
13	Write a C program to read data from the keyboard, write it to	5	DEC 2018		
	a file, read the same data from the file and display on the				

14	Write a Python program to check whether a number is prime	5	DEC 2018
	or not		
15	Write a C program to find factorial of a number using pointer	6	DEC 2018
16	What are the advantages of using pointers in C	4	DEC 2018
17	How does a structure differ from an array in C?	5	DEC 2018
18	How is append mode different from write mode regarding	5	DEC 2018
	files in C?		
19	Write a Python program to read time in sec and convert that	5	DEC 2018
	to hr:min:sec		
20	Write a Python program to check whether the given year is	5	DEC 2018
	leap year or not.		

Subject: LIFE SKILLS

Module 1			
SI. No	Questions	Marks	Κυ/ΚΤυ
			(Month/Year)
1	What do you mean by communication? What are the different	6	KTU,
	types of Barriers to communication?		2016,Dec
2	Briefly mention different Levels of communication?	5	KTU,2017
			May
3	Explain the Flow of communication and represent it	5	KTU,2017
	diagrammatically?		May
4	What are the different types of Communication Networks?	6	KTU,2017
-	Differences between Crew Discussion & Debete	-	Dec
5	Differences between Group Discussion & Debate	5	KTU,2016
			Dec, 2017
6	Compose an e-mail to your friend	6	
0	compose an e-main to your menu	0	Dec
7	What are the different types of Communication Networks	6	KTU 2017
, í	what are the amerene types of commandation wetworks	0	May
8	What is Miscommunication and list types of barriers to	6	KTU.Dec
	communication?	•	2017
			-
9	Differences between Literary writing & Technical writing	5	KTU,Dec
	, , , , , , , , , , , , , , , , , , , ,		2016
10	Methods to ensure success in GD	5	KTU, 2017
			May
11	Write a covering letter to the manager of an MNC enquiring	3	KTU, 2019
	about the vacancy of web developer in their firm.		May
12	Your college recently organised a seminar on 'Say No to	6	KTU,Dec
	Tobacco'. The speakers included well known educationists and		2018
	doctors. Write a report on the same for your college magazine		
	in not more than 100 words.		
	Module 2		
1	Different types of Thinking Hats	5	KTU,Dec
			2016
2	Differences between Lateral Thinking & Vertical Thinking	5	KTU,May
			2017
3	Differences between Creative Thinking & Critical Thinking	4	KTU, Dec
ļ			2016
4	Differences between Creativity & Innovation	3	KTU, May
			2016

5	Define : Kinesics, Proxemics, Chronemics	3	KTU, Dec
6	Interpretting body language cues	3	KTU, Dec
7	Discuss the steps in Problem Solving	5	KTU. Dec2015, May 2017
8	Differences between Convergent thinking & Divergent Thinking	3	KTU, May 2017
9	Myths of Creativity	5	KTU, Dec 2016
10	What are the different functions of Left Brain & Right Brain?	4	KTU, May 2017
11	Discuss about the six thinking hats. Explain the significance of colours associated with each.	6	KTU, May 2019
12	You were asked to give a speech on global warming for the Environment Day celebration in your college. Prepare the data needed by the method of mind mapping.	3	KTU, Dec 2018
	Module 3		
1	Differences between Group & Team	5	KTU, Dec 2017,May 2016
2	Techniques of Group Dynamics	6	KTU, May 2017
3	Different types of Group	3	KTU, Dec 2016, May2017
4	What are the different steps taken in group problem solving?	6	KTU, Dec 2018
5	Different steps in Group Problem Solving	6	KTU, Dec 2017
6	Different types of Team	3	KTU, May 2017
7	What do you mean by Brain Storming?	4	KTU, Dec 2016
8	What is Mind Mapping & diagrammatically represent it	6	KTU, Dec 2015,May 2016
9	What are the common Problem Solving Techniques?	5	KTU,Dec 2016, May 2017
10	Kohlberg's Theory	6	KTU,Dec 2017
11	Discuss how to manage conflicts in teams.	3	KTU, May 2019

12	Differentiate between group discussion and debate.	3	KTU, May
			2019
	Module 4		
1	what do you mean by Moral Realism?	3	KTU, May 2016
2	What is Moral Absolutisim?	3	KTU Dec
2			2017
3	What is the importance of Proffessional Ehics?	5	KTU, May
	·		2017
4	Explain Engineering as Experimentation	3	KTU, May
			2017
5	Kohlberg's Theory	6	KTU, Dec
			2019, May
6	What is the relevance of Environmental ehics with regard	6	KTU, Dec
	to Engineering?		2017
-	National terror and terror for later		
/	what is computer code of enics	4	KTU, May
0	Montion IEEE and ME code of phice	2	ZUIO
0	Mention leee and Me code of enics	5	2016
٥	What do you mean by Empathy Integrity & sharing?	1	KTU Dec
5	what do you mean by Empathy, integrity & sharing:	4	2016
10	Case Study	20	KTU(All
	cuce crudy		Sems)
11	Explain the meaning and need of work ethics.	3	KTU, Dec
			2018
	Module 5		
1	What do you mean by Leadership & what are its different	5	KTU, May
	traits?		2016,Dec
			2017
2	Explain VUCA Leadership	3	KTU, May
		-	2017
3	What are the different Levels of Leaderships?	6	KTU, Dec
4	Even in the term making of a loader	2	
4	Expain the term making of a leader	5	2016
5	Differences between Transactional leader &	5	KTU Dec
5	Transformational leader?		2017
			_
6	Give a short note on leadership styles.	6	KTU,Dec
			2018
7	Differences between Manager & Leader	4	KTU, Dec
			2017
8	Differences between Coaching & Teaching	3	KTU, May
			2016
9	What do you mean by DART Leadership?	3	KTU, Dec
10	What are the different levels of Loo develop 2	6	2017 KTU Dee
10	what are the different levels of Leadership?	D	кто, Dec 2017
			2017

11	Differentiate between Transactional leader and Transformational leader?	3	KTU, May 2019
12	Explain different levels of leadership.	3	KTU, May 2019