SEMESTER 5

COMPUTER SCIENCE AND ENGINEERING

COMPUTER NETWORKS

(Common to CS/CD/CM/CR/CA/AD/AI/CB/CN/CU/CI)

Course Code	PCCST501	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the core concepts of computer networking.
- 2. To develop a big picture of the internetworking implementation on Linux-based systems.
- **3.** To impart an overview of network management concepts.

Module	Syllabus Description	Contact
No.	Synabus Description	
1	Overview of the Internet, Protocol layering (Book 1 Ch 1) Application Layer: Application-Layer Paradigms, Client-server applications - World Wide Web and HTTP, FTP. Electronic Mail, DNS. Peer-to-peer paradigm - P2P Networks, Case study: BitTorrent (Book 1 Ch 2)	6
2	Transport Layer: Services, Protocols, UDP, TCP (Book 1 Ch 3). Hands-on: Sockets Introduction, Elementary TCP Sockets, TCP Client/Server Example, I/O Multiplexing: The select and poll Functions (Book 2 Ch 3 to 6), Elementary UDP Sockets (Book 2 Ch 8), Advanced I/O Functions (Book 2 Ch 14) Network Layer: Introduction, Network-layer protocols, Unicast routing, Multicast routing - Multicasting Basics, Intra domain and inter-domain routing, Next generation IP (Book 1 Ch 4), Quality of Service (Book 1 Ch 8) Hands-on: Linux Kernel Implementation of Routing Table and Caches, Routing Cache Implementation Overview, Adding new entry in the Routing Table using ip command (Book 3 Ch 14)	18

3	Data-Link Layer: Data link control (DLC), Multiple access protocols (MAC), Link-layer addressing, Ethernet protocol, Connecting devices (Book 1 Ch 5) Wireless LANs, Mobile IP (Book 1 Ch 6) Hands-on: Datalink Provider Interface, SOCK_PACKET and PF_PACKET (Book 2 Ch 29)	11
4	SNMP, ASN.1 (Book 1 Ch 9) Physical Layer: Data and signals, Digital transmission, Analog transmission, Bandwidth utilization, Transmission media (Book 1 Ch 7)	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge
		Level (KL)
CO1	Understand the internetworking design in terms of protocol stack and the role of various application layer protocols	K2
CO2	Illustrate the functions of the transport layer from connectionless and connection-oriented perspectives	К3
CO3	Identify how the network layer achieves host-to-host connectivity and caters to the diverse service requirements of the host applications	К3
CO4	Explain the nuances of the data link layer design and demonstrate the various data link link layer protocols	К3
CO5	Describe the fundamental characteristics of the physical layer and understand how the physical layer supports the functionalities of the top layers	K2

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3	2										3
CO3	3	2			2							3
CO4	3	2										3
CO5	3											3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Computer Networks: A Top- Down Approach	Behrouz A Forouzan	McGraw Hill	SIE, 2017
2	Unix Network Programming, Volume 1: The Sockets Networking API	W. Richard Stevens, Andrew M. Rudoff, Bill Fenner	Pearson Education	3/e, 2004
3	TCP/IP Architecture, design, and implementation in Linux	Sameer Seth M. Ajaykumar Venkatesulu	Wiley	1/e, 2008

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Computer Networking: A Top- Down Approach Featuring Internet	J. F. Kurose and K. W. Ross	Pearson Education	8/e, 2022
2	Computer Networks, A Systems Approach	L. L. Peterson and B. S. Davie	Morgan Kaufmann	5/e, 2011

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://nptel.ac.in/courses/106/105/106105183/					

DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CS/CD/CM/AM/CB/CN/CU/CG)

Course Code	PCCST502	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Min.
Prerequisites (if any)	PCCST303	Course Type	Theory

Course Objectives:

- To gain a foundational understanding of algorithms and their analysis.
- To develop problem-solving skills using various algorithm design paradigms like divide and conquer, dynamic programming, etc.
- To understand the concepts of tractable and intractable problems, and different complexity classes (P, NP, NP-hard, NP-complete).

Module	Syllabus Description	Contact
No.		Hours
1	Algorithms – Characteristics, Criteria for Analysing Algorithms; Time and Space Complexity - Best, Worst, and Average Case Complexities; Asymptotic Notations and their properties; Time and Space Complexity Calculation of simple algorithms; Analysis of Recursive Algorithms - Recurrence Equations, Solution of Recurrence Equations: Iteration Method, Recursion Tree Method, Substitution method and Master's Theorem (proof not expected); Balanced Search Trees - AVL Trees (Insertion and deletion operations with all rotations in detail, algorithms not expected)	11

2	Disjoint Sets - Disjoint set operations, Union and find algorithms, Analysis of union by rank with path compression, Connected components of a Graph; Graphs – Representations, Traversals : BFS, DFS and their analysis, Strongly Connected Components; Topological Sorting. Divide and Conquer Strategy – Control Abstraction, Merge Sort, Strassen's Matrix Multiplication, Analysis.	11
3	Greedy Strategy - Control Abstraction, Fractional Knapsack; Minimum Cost Spanning Tree - Kruskal's and Prim's, Analysis; Shortest Path Problem - Dijkstra's Algorithm, Analysis; Dynamic Programming - Control Abstraction, Optimality Principle, Matrix Chain Multiplication, Analysis; All Pairs Shortest Path Algorithm - Floyd-Warshall Algorithm, Analysis; Backtracking - Control Abstraction, N - Queens Problem, Algorithm.	11
4	Branch and Bound - Control Abstraction, Travelling Salesman Problem, Algorithm; Complexity - Tractable and Intractable Problems; Complexity Classes: P, NP, NP- Hard and NP-Complete Classes; NP Completeness proof - Clique Problem and Vertex Cover Problem; Approximation algorithms - Bin Packing; Randomized Algorithms - Definitions of Monte Carlo and Las Vegas algorithms; Randomized version of Quick Sort algorithm with analysis.	11

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each of which 1 question should be answered.		60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge
CO1	Analyze any given algorithm and express its time and space complexities in asymptotic notations.	Level (KL) K4
CO2	Solve the recurrence equations using Iteration, Recurrence Tree, Substitution and Master's Method to compute time complexity of algorithms.	К3
CO3	Illustrate the operations of advanced data structures like AVL trees and Disjoint sets.	КЗ
CO4	Illustrate the representation, traversal and different operations on Graphs.	К3
CO5	Demonstrate Divide-and-conquer, Greedy Strategy, Dynamic programming, Branch-and Bound and Backtracking algorithm design techniques.	K2
CO6	Classify a problem as computationally tractable or intractable, and discuss strategies to address intractability.	K4
Note: K	K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluat	te, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2								3
CO2	3	3	3									2
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3	2								2
CO6	3	3	3	2								2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Algorithms	T.H.Cormen, C.E.Leiserson, R.L.Rivest, C. Stein,	Prentice-Hall India	4/e, 2018			
2	Fundamentals of Computer Algorithms	Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran,	Orient Longman Universities Press	2/e, 2008			
3	Computer Algorithms, Introduction to Design and Analysis	Sara Baase and Allen Van Gelder	Pearson Education	3/e, 2009			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Design and Analysis of Algorithms	Michael T. Goodrich Roberto Tamassia	Wiley	1/e, 2021				
2	Algorithm Design	Jon Kleinberg, Eva Tardos	Pearson Education	1/e, 2005				
3	Algorithms	Robert Sedgewick, Kevin Wayne	Pearson Education	4/e, 2011				
4	Fundamentals of Algorithmics	GIlles Brassard, Paul Brately	Pearson Education	1/e, 1996				
5	The Algorithm Design Manual	Steven S. Skiena	Springer	2/e, 2008				

Video Links (NPTEL, SWAYAM)							
Module No. Link ID							
1	https://archive.nptel.ac.in/courses/106/106/106106131/						
2	https://www.coursera.org/learn/dynamic-programming-greedy-algorithms						
3	https://online.stanford.edu/courses/soe-ycsalgorithms1-algorithms-design-and-analysis-part-1						
4	https://online.stanford.edu/courses/soe-ycs0001-algorithms-design-and-analysis-part-2						

MACHINE LEARNING

(Common to CS/AD/CR/CA/CC/CD)

Course Code	PCCST503	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To impart the fundamentals principles of machine learning in computer and science.
- **2.** To provide an understanding of the concepts and algorithms of supervised and unsupervised learning.

Module	Syllabus Description	Contact
No.	Synabus Description	
	Introduction to ML:-	
	Machine Learning vs. Traditional Programming, Machine learning	
	paradigms - supervised, semi-supervised, unsupervised, reinforcement	
	learning.	
	Parameter Estimation - Maximum likelihood estimation (MLE) and	
1	maximum aposteriori estimation (MAP), Bayesian formulation.	9
1	Supervised Learning :-	,
	Feature Representation and Problem Formulation, Role of loss functions	
	and optimization	
	Regression - Linear regression with one variable, Linear regression with	
	multiple variables : solution using gradient descent algorithm and matrix	
	method.	
2	Classification - Logistic regression, Naïve Bayes, KNN, Decision Trees -	9
Z	ID3	

	Generalisation and Overfitting - Idea of overfitting, LASSO and RIDGE	
	regularization, Idea of Training, Testing, Validation	
	Evaluation measures - Classification - Precision, Recall, Accuracy, F-	
	Measure, Receiver Operating Characteristic Curve(ROC), Area Under	
	Curve (AUC).	
	Regression - Mean Absolute Error (MAE), Root Mean Squared Error	
	(RMSE), R Squared/Coefficient of Determination.	
	SVM - Linear SVM, Idea of Hyperplane, Maximum Margin Hyperplane,	
	Non-linear SVM, Kernels for learning non-linear functions	
3	Neural Networks (NN) - Perceptron, Neural Network - Multilayer feed-	9
	forward network, Activation functions (Sigmoid, ReLU, Tanh), Back	
	propagation algorithm.	
	Unsupervised Learning	
	Clustering - Similarity measures, Hierarchical Clustering - Agglomerative	
	Clustering, partitional clustering, K-means clustering	
4	Dimensionality reduction - Principal Component Analysis, Multidimensional	9
	scaling	
	Ensemble methods - bagging, boosting; Resampling methods -	
	Bootstrapping, Cross Validation. Practical aspects - Bias-Variance tradeoff.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate Machine Learning concepts and basic parameter estimation methods.	К2
CO2	Demonstrate supervised learning concepts (regression, classification).	К3
CO3	Illustrate the concepts of Multilayer neural network and Decision trees	К3
CO4	Describe unsupervised learning concepts and dimensionality reduction techniques	К3
CO5	Use appropriate performance measures to evaluate machine learning models	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Introduction to Machine Learning	Ethem Alpaydin	MIT Press	4/e, 2020		
2	Data Mining and Analysis: Fundamental Concepts and Algorithms	Mohammed J. Zaki Wagner Meira	Cambridge University Press	1/e, 2016		
3	Neural Networks for Pattern Recognition	Christopher Bishop	Oxford University Press	1/e, 1998		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Applied Machine Learning	M Gopal	McGraw Hill	2/e, 2018			
2	Machine Learning using Python	Manaranjan Pradhan U Dinesh Kumar	Wiley	1/e, 2019			
3	Machine Learning: Theory and Practice	M.N. Murty, V.S. Ananthanarayana	Universities Press	1/e, 2024			

	Video Links (NPTEL, SWAYAM)					
No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/105/106105152/					
2	https://archive.nptel.ac.in/courses/106/106/106106139/					
3	https://nptel.ac.in/courses/106106202\					

MICROCONTROLLERS

(Common to CS/CC)

Course Code	PBCST504	CIE Marks	60
Teaching Hours/Week (L:T:P:R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the ARM architecture and ARM-based microcontroller architecture.
- **2.** To impart knowledge on the hardware and software components to develop embedded systems using STM32 microcontrollers.

Module No.	Syllabus Description		
1	Introduction to ARM Cortex-M Architecture:- Overview of Embedded Systems, Applications of Embedded Systems, Introduction to Embedded C, Microcontrollers vs. Microprocessors, Classification of processors, Overview of ARM Cortex-M Series, Introduction to the Cortex-M23 and Cortex-M33 processors and the Armv8-mArchitecture, ARM Core Features: Registers, Memory, and Bus Architecture, Comparison with previous generations of Cortex-M processors.	9	
2	STM32 Microcontroller Overview and Peripheral Programming:- Introduction to STM32 Family, STM32U575 Features and Specifications, Power Management and Low-Power Features Libraries, Introduction to Integrated Development Environment and HAL, Writing, and Debugging Your First Program(LED Interfacing), Interfacing Seven-Segment Display, LCD Display, and Matrix Keypad, Relay Interfacing, Analog to Digital Conversion: Potentiometer, temperature sensor, LDR, Microphone, Digital to Analog Conversion: Simple DAC Output Generation, Generating a Sine Wave, Audio	11	

	Signal Generation, Interrupt Handling, Timer and Counter Applications: Basic	
	Timer Configuration, Timers as Counters, Timer-Based Real-Time Clock	
	(RTC)	
	Communication Protocols and USB:-	
	Communication Protocols and USB:-	
	Serial port terminal Application, Serial communication (USART, I2C, SPI,	
	CAN), Interfacing an I2C Temperature Sensor and Displaying Data on an LCD,	
3	writing to and Reading from an SPI-based EEPROM, Configuring and	10
	Implementing CAN Communication between Multiple STM32U575	
	Microcontrollers, Creating a USB HID Device for Keyboard / Mouse	
	Emulation	
	LTW: L C IPTOS	
	IoT, Wireless Communication, and RTOS:-	
	Introduction to IoT, IoT Architecture, Protocols (MQTT, CoAP), IoT Security	
	Principles and Common Threats Wireless Communication: Interfacing GSM	
	(Call, SMS, Internet), Bluetooth Communication Basics, LoRa Communication	
	Basics and Applications, Designing an IoT-Based Home Automation System,	
	Introduction to RTOS Concepts, FreeRTOS with STM32: Task Creation,	
4	Scheduling, and Management, RTOS Timers, Delays, and RTC Integration,	14
	Inter-task Communication: Queues and Semaphores	
	Trust Zone Technology: Introduction to ARM Trust Zone, Trust Zone	
	Architecture and Features, Secure and Non-Secure Worlds: Configuration and	
	Management, Implementing Trust Zone in STM32U575, Advanced Debugging	
	and Optimization: Code and Memory Optimization Techniques, Debugging	
	Strategies and Tools	
	Strategies and 100is	

Suggestion on Project Topics

• Identify real world problems requiring hardware solutions and develop them using peripheral devices. Some of the examples would be - Home automation, Small home/office security system, ARM based voice response system etc.

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each question	
• Total of 8 Questions,	can have a maximum of 2 subdivisions. Each question	40
each carrying 2 marks	carries 6 marks.	
(8x2 =16 marks)	(8x2 = 16 marks) $(4x6 = 24 marks)$	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the architectural features and instructions of the ARM microcontrollers.	K2
CO2	Develop applications involving interfacing of external devices and I/O with ARM microcontroller.	К3
CO3	Use various communication protocols of interaction with peer devices and peripherals.	К3
CO4	Demonstrate the use of a real time operating system in embedded system applications.	К3
CO5	Apply hardware security features of ARM in real world applications.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3								3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors	Joseph Yiu	Newnes - Elsevier	3/e, 2014				
2	Mastering STM32	Carmine Noviello	Learnpub	2/e, 2022				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	ARM System Developer's Guide	Andrew N. Sloss, Dominic Symes, Chris Wright	Morgan Kaufman	1/e, 2008			
2	Embedded System Design with Arm Cortex-M Microcontrollers	Cem Ünsalan, Hüseyin Deniz Gürhan Mehmet Erkin Yücel	Springer	1/e, 2022			
3	Introduction to ARM ® Cortex-M Microcontrollers	Jonathan W. Valvano	Self-Published	5/e, 2014			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/105/106105193/					
2	https://www.st.com/resource/en/datasheet/					

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

	Allotted
	Marks
Project Planning and Proposal	5
Contribution in Progress Presentations and Question Answer Sessions	4
Involvement in the project work and Team Work	3
Execution and Implementation	10
Final Presentations	5
Project Quality, Innovation and Creativity	3
Total	30
	Contribution in Progress Presentations and Question Answer Sessions Involvement in the project work and Team Work Execution and Implementation Final Presentations Project Quality, Innovation and Creativity

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project

Creativity in solutions and approaches

SOFTWARE PROJECT MANAGEMENT

(Common CS/CD/CM/CR/CA/AD/AM)

Course Code	PECST521	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hr.30 Min.
Prerequisites (if any)	PECST411	Course Type	Theory

Course Objectives:

- 1. To learn the techniques to effectively plan, manage, execute, and control projects within time and cost targets with a focus on Information Technology and Service Sector.
- 2. To learn agile project management techniques such as Scrum and DevOps.

Module No.	Syllabus Description			
1	Project scheduling and feasibility study: - Project Overview and Feasibility Studies - Identification, Market and Demand Analysis, Project Cost Estimate, Financial Appraisal; Project Scheduling - Project Scheduling, Introduction to PERT and CPM, Critical Path Calculation, Precedence Relationship, Difference between PERT and CPM, Float Calculation and its importance, Cost reduction by Crashing of activity.	8		
2	Resource Scheduling, Cost Control and Project management Features:- Cost Control and Scheduling - Project Cost Control (PERT/Cost), Resource Scheduling & Resource Levelling; Project Management Features - Risk Analysis, Project Control, Project Audit and Project Termination.	8		
3	Agile Project Management: Agile Project Management - Introduction, Agile Principles, Agile methodologies, Relationship between Agile Scrum, Lean, DevOps and IT Service Management (ITIL;. Other Agile Methodologies - Introduction to	9		

	XP, FDD, DSDM, Crystal.			
	Scrum and DevOps in project management :-			
	Scrum - Various terminologies used in Scrum (Sprint, product backlog,			
	sprint backlog, sprint review, retro perspective), various roles (Roles in			
4	Scrum), Best practices of Scrum, Case Study; DevOps - Overview and its			
4	Components, Containerization Using Docker, Managing Source Code and	11		
	Automating Builds, Automated Testing and Test-Driven Development,			
	Continuous Integration, Configuration Management, Continuous			
	Deployment, Automated Monitoring, Case Study.			

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand how effectively plan, and schedule projects within time and cost targets	К2
CO2	Apply project estimation and evaluation techniques to real world problem	К3
CO3	Discuss different Agile Project Methodologies	K2
CO4	Apply various SCRUM practices in project management.	К3
CO5	Demonstrate the techniques used in DevOps.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3								2	2
CO2	3	3	3								2	2
CO3	3	3	3								2	2
CO4	3	3	3								2	2
CO5	3	3	3								2	2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Succeeding with Agile: Software Development Using Scrum	Mike Cohn	Addison-Wesley	1/e, 2009					

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Agile Product Management with Scrum	Roman Pichler	Addison-Wesley	1/e, 2010						
2	Agile Project Management with Scrum	Ken Schwaber	Microsoft Press	1/e, 2004						

	Video Links (NPTEL, SWAYAM)						
No.	No. Link ID						
1	https://archive.nptel.ac.in/noc/courses/noc19/SEM2/noc19-cs70/						
2	https://www.youtube.com/watch?v=TPEgII1OilU						
3	https://www.youtube.com/watch?v=7Bxdds2siU8						

ARTIFICIAL INTELLIGENCE

Course Code	PECST522	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To lay a solid foundation of the important abstractions, techniques, and reasoning for intelligent systems.
- 2. To enable the learners to understand the basic principles of Reinforcement Learning.

Module	Syllabus Description	Contact		
No.	Synabus Description			
1	Introduction to Artificial Intelligence:- Introduction, Foundation and history of AI Agents and Environments; The concept of rationality; The nature of environments, Structure of agents. Problem solving Agents Well-defined problems and solutions, Formulating problems; Example problems- vacuum world, 8-puzzle, 8-queens.	8		
2	Searching:- Depth First Search, Breadth First Search, Iterative Deepening Search. Heuristic Search strategies - Heuristic functions, The effect of heuristic accuracy on performance; Generate and test, Greedy best first search, A* algorithm, Constraint satisfaction problems, Adversarial search - Games, Optimal Decision in games, The minimax algorithm, Alpha-beta pruning.	10		
3	Knowledge-Based Agents:- The Wumpus World, Logic, Propositional Logic, Reasoning Patterns in Propositional Logic, First order logic, Inference in first order logic, propositional vs. first order inference, unification & lifts forward chaining, Backward chaining.	8		

	Reinforcement Learning:- Learning from Rewards, Passive Reinforcement						
4	Learning, Active Reinforcement Learning, Generalization in Reinforcement						
4	Learning, Policy Search, Apprenticeship and Inverse Reinforcement	10					
	Learning, Applications of Reinforcement Learning						

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome				
CO1	Explain how intelligent agents can solve problems.	K2			
CO2	Use the different types of search methods to solve various problems.	К3			
CO3	Formulate knowledge representation and examine resolution in propositional logic and first order logic.	К3			
CO4	Utilize reinforcement learning techniques to create intelligent agents.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	-	-	-	-	-	-	-	2
CO2	3	3	3	2	-	-	-	-	-	-	-	2
CO3	2	2	2	2	-	-	-	-	-	-	-	2
CO4	3	2	2	2	-	-	-	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	AI – A Modern Approach	Stuart Russel, Peter Norvig	Pearson Education	4/e, 2021						
2	Artificial Intelligence	Kevin Knight, Elaine Rich, Shivashankar B. Nair	Tata McGraw-Hill	3/e, 2009						

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Introduction to Artificial Intelligence and Expert Systems	Dan W. Patterson	Pearson Education	1/e, 2015		
2	Artificial Intelligence: Structures and Strategies for Complex Problem Solving	George F. Luger	Pearson Education	6/e, 2009		
3	Artificial Intelligence : Making a System Intelligent	Nilakshi Jain	Wiley	1/e, 2019		

	Video Links (NPTEL, SWAYAM)				
Module	Link ID				
No.	Link ID				
1	https://www.youtube.com/watch?v=X_Qt0U66aH0				
2	https://www.youtube.com/watch?v=te1K8on1Pk0				
3	https://www.youtube.com/watch?v=SEJhMO1IXZs				
4	https://youtu.be/YaPSPu7K9S0?si=DizMPlZ9uVSy50iG				

DATA ANALYTICS

Course Code	PECST523	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To help the learner to understand the basic concepts of data analytics.
- **2.** To cover the mathematics for data analytics, predictive and descriptive analytics of data, classification, and clustering & text analytics.
- **3.** To enable the learners to perform data analysis on a real world scenario using appropriate tools.

Module No.	Syllabus Description			
1	Introduction to Data Analytics:- Analytics Process Model, Analytical Model Requirements, Data Analytics Life Cycle overview; Association of two variables - Discrete variables, Ordinal and Continuous variable; Probability calculus - probability distributions; Hypothesis Testing - Basic definitions. Proximity Measures - Data Objects, Attribute types, Dissimilarity and Similarity measures.	9		
2	Association of Two Variables:- Summarizing the Distribution of Two Discrete Variables, Contingency Tables for Discrete Data, Joint, Marginal, and Conditional Frequency Distributions, Graphical Representation of Two Nominal or Ordinal Variables, Measures of Association for Two Discrete Variables,	9		

	Association Between Ordinal and Continuous Variables, Visualization of				
	Variables from Different Scales.				
	Statistical Description of data - Central tendency, Dispersion, Range,				
	Quartiles, Variance, Standard Deviation, and Interquartile Range.				
	Data Preprocessing - Cleaning, Integration, Reduction, Transformation, Discretization.				
3	Mining Frequent Patterns - Associations, Correlations, and Apriori Algorithms.	9			
	Classification - General approach to classification, ID3, Attribute				
	selection measures, Naive Bayesian Classification.				
	Clustering - K-Means, Agglomerative versus Divisive Hierarchical				
	Clustering, BIRCH, DBSCAN.				
	Text Processing :-				
	Boolean retrieval, Example IR problem, inverted index, processing				
4	Boolean queries, tokenization, stemming, phrase queries, vector space	9			
	model, finite automata and language model, query likelihood model,				
	naïve bayes text classification.				

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 subdivisions.	60
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the key concepts of data analytics	K2
CO2	Apply appropriate techniques to convert raw data into suitable format for practical data analytics tasks	К3
CO3	Extend the concept of association rule mining in real world scenario	К3
CO4	Select appropriate clustering and classification algorithms for various applications and extend data analytics methods to the new domains of data.	K4
CO5	Understand the basics of text analytics and text classification	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Introduction to Statistics and Data Analysis	Christian Heumann and Michael Schomaker	Springer	1/e, 2016	
2	Jiawei Han and Micheline Kamber	Data Mining Concepts and Techniques	Elsevier	3/e, 2012	

	Reference Books					
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year		
1	Introduction to Information	Christopher D. Manning,	Cambridge	1/e, 2008		
1	Retrieval	Raghavan, P., Schutze, H.	University Press	170, 2000		
2	Mining Text Data	Charu C. Aggarwal, Cheng Xiang Zhai	Springer	1/e, 2012		
3	Analytics in a Big Data World: The Essential Guide to Data Science and its Business Intelligence and Analytic Trends	Bart Baesens	John Wiley	1/e, 2013		
4	Introduction to Data Mining	Pang-Ning Tan, Michael Steinbach and Vipin Kumar	Pearson Education	1/e, 2007		

	Video Links (NPTEL, SWAYAM)
No.	Link ID
1	https://archive.nptel.ac.in/noc/courses/noc19/SEM1/noc19-cs15/
2	https://onlinecourses.swayam2.ac.in/cec19_cs01/preview

DATA COMPRESSION

(Common to CS/CD/CM/CR/AD/AI/AM/CN/CI)

Course Code	PECST524	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce students to basic applications, concepts, and techniques of Data Compression.
- **2.** To develop skills for using recent data compression software to solve practical problems in a variety of disciplines.

Module	Syllabus Description			
No.	Synabus Description			
1	Basic Compression Techniques:- Data Compression Approaches - Variable-Length Codes, Run-Length Encoding, Space - Filling Curves, Dictionary-Based Methods, Transforms, Quantization. Huffman Encoding - Huffman Decoding, Adaptive Huffman Coding, Facsimile Compression. Run Length Encoding (RLE), RLE Text compression, Dictionary based Coding- LZ77, LZ78, LZW and Deflate: Zip and Gzip compression.	10		
2	Advanced Techniques:- Arithmetic Coding - The Basic Idea, Implementation, Underflow; Image Compression- Introduction, Approaches to Image Compression, History of Gray Codes, Image Transforms, Orthogonal Transforms, The Discrete Cosine Transform, Intermezzo: Statistical Distributions, JPEG, Human Vision and Color, The Wavelet Transform, Filter Banks, WSQ, Fingerprint Compression	10		

3	Video Compression:- Video Compression - Analog video, Digital Video, Motion Compensation. MPEG standards MPEG, H.261	8
4	Audio Compression: Audio Compression - Companding, The Human Auditory System, Heinrich Georg Barkhausen, Linear Prediction, μ-Law and A-Law Companding, Shorten	8

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject Internal Examination-1 (Written)		Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the fundamental approaches in data compression techniques	K2
CO2	Illustrate various classical data compression techniques	К3
CO3	Illustrate various text and image compression standards	К3
CO4	Describe the video compression mechanisms to reduce the redundancy in video	К3
CO5	Understand the fundamental principles of audio data compression	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3										3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books									
Sl. No	Title of the Book	Name of the Author/s Publisher		Edition and Year					
1	A Concise Introduction to Data Compression	David Salomon	Springer	1/e, 2008					
2	Data compression: The Complete Reference	David Salomon	Springer	3/e, 2004					
3	Introduction to Data Compression	Khalid Sayood	Morgan Kaufman	1/e, 2003					

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Fractal and wavelet Image Compression techniques	Stephen Welstead,	РНІ	1/e, 1999
2	Multimedia System	Sleinreitz	Springer	1/e, 2006
3	The Data Compression Book	Mark Nelson, Jean-loup Gailly	BPB Publications	1/e, 1996

	Video Links (NPTEL, SWAYAM)
Module No.	Link ID
1	An Introduction to Information Theory by Prof. Adrish Banerjee zt IIT Kanpur https://onlinecourses.nptel.ac.in/noc22_ee49/preview

SEMESTER S5

DIGITAL SIGNAL PROCESSING

(Common to CS/CM/CA/AM)

Course Code	PECST526	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Signals and Systems	Course Type	Theory

Course Objectives:

- 1. To teach the concept of DFT and apply it for filtering data sequences.
- 2. To educate on the algorithms for complexity reduction in the computation of DFT.
- **3.** To teach the theory of FIR and IIR filters and to design FIR filters.
- **4.** To get exposed to the basic idea of some of the important techniques for designing efficient VLSI architectures for DSP.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Definition of a digital signal processing system, Sampling, Sampling rate, DFT and IDFT (Properties of DFT). Linear Convolution using Circular Convolution, Convolution of long data sequences- Overlap add method, overlap save method. Linear filtering methods based on DFT – FFT (DIT-FFT only) – efficient computation of the DFT of a 2N point real sequences – correlation – use of FFT in linear filtering and correlation, Symmetries in the DFT	9
2	Types of transfer functions- Ideal filters, Zero phase and linear phase transfer functions, Types of linear phase FIR transfer functions; Simple digital filters: Simple FIR digital filters (Low pass and high pass), Simple IIR digital filters (Low pass and high pass), All pass and minimum phase transfer function Design of FIR filter: window based design (Rectangular, Hamming, Hanning windows). Applications of DSP-Spectral analysis of sinusoidal signals.	8

3	Realization structures for FIR filters- direct, cascade, parallel. IIR Filter realization structures (Direct form I, II, cascade and Parallel and transposed structures); Computational accuracy in DSP implementation- Number formats for signals and coefficients in DSP systems, Dynamic range and precision, Sources of error in DSP implementation - A/D conversion error, DSP computational error, D/A Conversion error.	9
4	FFT and FIR Filter realization on a fixed point processor -finite wordlength effects - Quantization, rounding and truncation, overflow and scaling. DSP Algorithm representations, data flow, control flow, signal flow graphs, block diagrams - Loop bound, iteration bound, critical path - Pipelining, parallel processing, low power architectures - Retiming, folding and unfolding techniques, applications. Hands-on: FPGA based hardware realization of the FFT algorithm, circular convolution, IIR and FIR filter structures using iVerilog. To realize different DSP algorithms including basic multiply accumulation and shifting operations on a fixed point processor. Analyze the effect of the finite wordlength by implementing the FFT algorithm and FIR filters by using fixed point coefficient representation in different formats like Q7, Q15 etc. Design an FIR low pass filter using MATLAB/SCILAB and check how it filters a speech signal by recording it and playing the result.	10

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 Marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the concept of DFT and apply it for determining the spectral information of data sequences.	К2
CO2	Apply algorithms for complexity reduction in the computation of DFT.	К3
CO3	Use the theory of FIR and IIR filters and be able to design FIR filters using the window method.	К3
CO4	Build the IIR and FIR filter transfer functions using suitable structures	К3
CO5	Identify the effect of finite wordlength on DSP algorithm implementation.	К3
CO6	Utilize the low power architectures for implementing the DSP algorithms	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3	3								2
CO4	3	3	3	3								2
CO5	3	3	3	3								2
CO6	3	3	3				3					2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text	Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Digital Signal Processing [Modules 1,2,3]	S. Salivahanan	McGraw Hill	10/e, 2019
2	Digital Signal Processing: A Computer - Based Approach [Modules 2]	Sanjit K.Mitra	McGraw Hill	4/e, 2013
3	VLSI Signal Processing Systems, Design and Implementation [Module 4]	Keshab K. Parhi	Wiley	1/e, 2007

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Digital Signal Processing	John G. Prokais, Dimitris K Manolakis	Pearson	4/e, 2007
2	Introduction to Digital Signal Processing	Johnny R Johnson	Pearson	1/e, 2015
3	Mathematics of the Discrete Fourier Transform (DFT): with Audio Applications	Julius O. Smith III	W3K Publishing	2/e, 2007
4	Digital Signal Processing : Fundamentals, Techniques and Applications	Juan Zhang	Nova Science Publishers	1/e, 2016
5	Fast Fourier Transform Algorithms for Parallel Computers (Vol 2)	Daisuke Takahashi	Springer	1/e,

No.	Link ID
1	https://archive.nptel.ac.in/courses/108/101/108101174/
2	https://methodist.edu.in/web/uploads/files/DSP%20NOTES.pdf

SEMESTER S5

COMPUTER GRAPHICS & MULTIMEDIA

(Common to CS/CD/CR/CA/AD)

Course Code	PECST527	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide strong technological concepts in computer graphics including the three-dimensional environment representation in a computer, transformation of 2D/3D objects and basic mathematical techniques and algorithms used to build applications.
- **2.** To give a good understanding of the multimedia frameworks for audio/video domains and different compression algorithms.

SYLLABUS

Module No.	Syllabus Description		
1	Basics of Computer graphics - Basics of Computer Graphics and its applications. Video Display devices - LED, OLED, LCD, PDP and FED and reflective displays. Random and Raster scan displays and systems. Line and Circle drawing Algorithms - Line drawing algorithms-Bresenham's algorithm, Liang-Barsky Algorithm, Circle drawing algorithms - Midpoint Circle generation algorithm, Bresenham's Circle drawing algorithm.	10	
2	Geometric transformations - 2D and 3D basic transformations - Translation, Rotation, Scaling, Reflection and Shearing, Matrix representations and homogeneous coordinates. Filled Area Primitives - Scan line polygon filling, Boundary filling and flood filling.	8	
3	Transformations and Clipping Algorithms - Window to viewport transformation. Cohen Sutherland and Midpoint subdivision line clipping	8	

	algorithms, Sutherland Hodgeman and Weiler Atherton Polygon clipping	
	algorithms.	
	Three dimensional graphics - Three dimensional viewing pipeline.	
	Projections- Parallel and Perspective projections. Visible surface detection	
	algorithms- Back face detection, Depth buffer algorithm, Scan line	
	algorithm, A buffer algorithm.	
	Fundamental of Multimedia - Introduction to Multimedia, Authoring and	
	Tools, Graphics and Image Data Representations, Popular File Formats,	
	Fundamental Concepts and types of Video, Basics of Digital Audio and its	
4	types.	9
4	Compression Methods - Lossless Compression Algorithms- Run-Length	9
	Coding, Arithmetic Coding. Lossy Compression Algorithms- Transform	
	Coding. JPEG and JPEG-LS Standard Image Compression, H.261. Video	
	Compression Technique.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Understand the principles of computer graphics and displays	K2		
CO2	Illustrate line drawing, circle drawing and polygon filling algorithms	К3		
CO3	Illustrate 2D and 3D basic transformations and matrix representation	К3		
CO4	Demonstrate different clipping algorithms and 3D viewing pipeline.	К3		
CO5	Summarize the multimedia features and specific compression algorithms.	К2		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer Graphics : Algorithms and Implementations	D. P. Mukherjee, Debasish Jana	РНІ	1/e, 2010				
2	Computer Graphics with OpenGL	Donald Hearn, M. Pauline Baker and Warren Carithers	PHI	4/e, 2013				
3	Fundamentals of Multimedia	Ze-Nian Li and Mark S. Drew	Pearson	2003				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Flat Panel Displays	Jiun-Haw Lee, I-Chun Cheng, Hong Hua, Shin- Tson Wu	Wiley	1/e, 2020			
2	Computer Graphics and Multimedia	ITL ESL	Pearson	1/e, 2013			
3	Computer Graphics	Zhigang Xiang and Roy Plastock	McGraw Hill	2/e, 2000			
4	Principles of Interactive Computer Graphics	William M. Newman and Robert F. Sproull	McGraw Hill	1/e, 2001			
5	Procedural Elements for Computer Graphics	David F. Rogers	McGraw Hill	1/e, 2017			
6	Computer Graphics	Donald D Hearn, M Pauline Baker	Pearson	2/e, 2002			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1, 2, 3	Computer Graphics By Prof. Samit Bhattacharya at IIT Guwahati https://onlinecourses.nptel.ac.in/noc20_cs90/preview					
4	Web Based Technologies and Multimedia Applications by Prof. P. V. Suresh at Indira Gandhi National Open University https://onlinecourses.swayam2.ac.in/nou20_cs05/preview					

SEMESTER S5

ADVANCED COMPUTER ARCHITECTURE

Course Code	PECST528	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCST404	Course Type	Theory

Course Objectives:

- 1. To introduce the advanced processor architectures including parallelism concepts in Programming of multiprocessor and multicomputers.
- 2. To provide detailed understanding about data flow in computer architectures.

SYLLABUS

Module	Syllabus Description	
No.		
	Introduction – The impact of hardware and software technology trends Self review – Instruction set Architecture, Memory addressing, addressing modes Class of Computers, Concept of Computer Hardware and Organization (P15, 5th, Edition). Meanwing a Paraeting and Symposizing and Symposi	
1	5th Edition) Measuring, Reporting and Summarizing Performance, Benchmarks – Desktop and Server Amdahl's Law, Processor Performance Equation	
	<u>Beyond the books</u> — Visit <u>www.spec.org</u> . Explore the High Performance Computing benchmarks and compare the results submitted by different vendors for the same benchmark. Are you able to appreciate the need for benchmarks to compare performance? What are retired benchmarks? Can you write a paper and publish results based on a retired benchmark?	
2	Review the basic Concepts of Parallel Processing and Pipelining Instruction Level Parallelism, data dependencies and hazards Different types of dependences, Compiler Techniques for ILP, Branch Prediction – Correlating	

	branch predictor Dynamic Scheduling - Idea, Introduction to Tomasulo's						
	scheme. Register Renaming Hardware Speculation, Reorder Buffers						
	Multiple issue and static scheduling, VLIW						
	Data Level Parallelism. Vector Processors – How do they work, Memory						
	Banks, Stride, Scatter Gather. SIMD-comparison with vector GPU,						
	-						
	Comparison of loops in C vs CUDA NVIDIA GPU Memory structure						
	Vector Processor vs GPU, Multimedia SIMD computers vs GPU						
3	Multiprocessor Architecture, Centralized shared memory architecture Cache						
	coherence and snooping protocol (Implementation details – not required).						
	Performance of Symmetric Shared-Memory Processors. Distributed Shared						
	Memory and Directory based protocol - basics. Synchronization - Basic						
	Hardware Primtives. Memory Consistency Models – Sequential and relaxed						
	Warehouse Scale Computers - Goals and requirements. Programming						
	frameworks for Batch processing - Map reduce and Hadoop Computer						
	Architecture of Warehouse-scale computers Moore's Law, Dennard Scaling,						
	Dark Silicon and the transition towards Heterogeneous Architectures						
	Asymmetric multi-core architecture - Static and Dynamic (Overall idea,						
4	example processors) Functional Heterogeneous Multicore architecture –						
	GPUs, Accelerators, Reconfigurable Computing Beyond the textbook –						
	Identify the processor used in your PC and mobile phone. Study about its						
	architecture, is it homogeneous or heterogeneous, does it use GPUs, what						
	information can you gather about it from the manufacturer's website –						
	Discuss in the class						
	Dibondo III dio vindo						

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Enumerate the different classes of computers and where they are used in everyday life.	K2
CO2	Compute the effect of hardware/software enhancements on the speedup of a processor using Amdahl's law.	К3
CO3	Interpret possible dependencies that can cause hazards in a given block of code.	К3
CO4	Summarize different strategies followed to ensure Instruction Level Parallelism.	К2
CO5	Compare different strategies followed to ensure Instruction Level Parallelism and different strategies followed to ensure Data Parallelism.	К3
CO6	Illustrate the need for memory consistency models and cache coherence protocols and explain the principle behind it.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3	3								3
CO5	3	3	3	3								3
CO6	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer architecture: A Quantitative Approach.	Hennessy, J. and Patterson, D	Morgan Kaufman	5/e, 2012				
2	The Dark Side of Silicon: Energy Efficient Computing in the Dark Silicon Era	Kanduri, Anil, et al.	Springer	1/e, 2017				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer Architecture	Gérard Blanchet Bertrand Dupouy	Wiley	1/e, 2013				
2	Advanced Computer Architectures	Sajjan C Shiva	Taylor & Fancis	1/e, 2018				
3	Computer Architecture	Charles Fox	no starch press	1/e, 2024				

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://archive.nptel.ac.in/courses/106/103/106103206/					

SEMESTER S5

DATA MINING

(Common to CS/CD/CM/CA/AM)

Course Code	PECST525	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a thorough understanding of the key processes and concepts involved in data mining and data warehousing within application domains
- 2. To enable students to understand the different data pre-processing techniques, fundamentals and advanced concepts of classification, clustering, association rule mining, text mining and web mining, and apply these techniques in real-world scenarios

SYLLABUS

Module No.	Syllabus Description						
1	Data Mining Fundamentals:- Data Mining - concepts and applications, Knowledge Discovery in Database Vs Data mining, Architecture of typical data mining system, Data Mining Functionalities Data warehouse - Differences between Operational Database Systems and Data Warehouses, Multidimensional data model- Warehouse schema, OLAP Operations, Data Warehouse Architecture	8					
2	Data Preprocessing:- Data Preprocessing - Need of data preprocessing, Data Cleaning- Missing values, Noisy data, Data Integration and Transformation	9					

	Data Reduction - Data cube aggregation, Attribute subset selection, Dimensionality reduction, Numerosity reduction, Discretization and concept hierarchy generation.	
3	Classification And Clustering:- Classification - Introduction, Decision tree construction principle, Information Gain, Gini index, Decision tree construction algorithm - ID3, Neural networks, back propagation, Evaluation measures - accuracy, precision, recall, F1 score Clustering - Introduction to clustering, distance measures, Clustering Paradigms, Partitioning Algorithm - k means, Hierarchical Clustering, DBSCAN	9
4	Association Rule Analysis And Advanced Data Mining: - Association Rule Mining - Concepts, Apriori algorithm, FP Growth Algorithm Web Mining - Web Content Mining, Web Structure Mining- Page Rank, Web Usage Mining- Preprocessing, Data structures, Pattern Discovery, Pattern Analysis Text Mining - Text Data Analysis and information Retrieval, Basic measures for Text retrieval, Text Retrieval methods, Text Indexing Technique	10

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Students must be asked to identify problems involving large datasets and identify the right solution from the concepts already learned. A comparison of the results with a similar approach also need to be performed to assess the Knowledge Level 5.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 3 subdivisions.	60
each carrying 3 marks	Each question carries 9 marks.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Understand the key process of data mining and data warehousing concepts in application domains.	K2
CO2	Apply appropriate pre-processing techniques to convert raw data into suitable format for practical data mining tasks	К3
CO3	Illustrate the use of classification and clustering algorithms in various application domains	К3
CO4	Comprehend the use of association rule mining techniques	К3
CO5	Explain advanced data mining concepts and their applications in emerging domains	К2

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										2
CO2	3	3	3	3	2							2
CO3	3	3	3	3	2							2
CO4	3	3	3	3	2							2
CO5	2	2										2

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Data Mining Concepts and Techniques	Jaiwei Han, Micheline Kamber	Elsevier	3/e, 2006		
2	Data Mining: Introductory and Advanced Topics	Dunham M H	Pearson Education	1/e, 2006		

Reference Books						
Sl. No Title of the Book Name of the Author/s Name of the Publisher						
1	Introduction to Data Mining	Pang-Ning Tan, Michael Steinbach	Addison Wesley	1/e, 2014		
2	Data Mining: Concepts, Models, Methods, and Algorithms	Mehmed Kantardzic	Wiley	2/e, 2019		

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://youtu.be/ykZUGcYWg?si=qiqynQyjI1sNNiHE				
2	https://youtu.be/NSxEiohAH5o?si=ZIJHMiRvpFcNQNMA				
3	https://youtu.be/VsYKqOokgaE?si=rgndBZqpzB29LUGg				
4	https://youtu.be/N_whCVtfL9M?si=VPMH9NP4vdAaiuPe				

SEMESTER S5

ADVANCED GRAPH ALGORITHMS

Course Code	PECST595	CIE Marks	40
Teaching Hours/Week	3:0:0:0	ESE Marks	60
(L: T:P: R)			
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GAMAT401	Course Type	Theory
	PCCST303		
	PCCST502		

Course Objectives:

- 1. To gain proficiency in designing and implementing sophisticated graph algorithms for analyzing large-scale networks, and apply these techniques to real-world problems such as social network analysis and transportation optimization.
- 2. To develop the ability to critically evaluate and enhance advanced graph algorithms for dynamic and evolving graphs, using real-world case studies to illustrate their application and performance in complex scenarios.

SYLLABUS

Module	Syllabus Description		
No.			
1	Maximum Flow Algorithms - Dinic's Algorithm, Push-Relabel Algorithm. Applications - network bandwidth allocation, data center resource management. Minimum Cost Flow - Cycle-Canceling Algorithm, Capacity Scaling Algorithm. Applications - transportation logistics, network routing with cost constraints. Assignments: 1. Network Bandwidth Allocation - Optimize bandwidth allocation in a communication network using Dinic's Algorithm. Implement Dinic's Algorithm to solve a network flow problem where you are given a communication network represented as a directed graph with capacities on edges. Your goal is to maximize	9	

	the flow from a source node to a sink node. Use a real-world				
	network dataset (e.g., a telecommunications network with nodes and				
	link capacities).				
	2. Logistics Optimization - Optimize the transportation of goods in a				
	supply chain network using the Capacity Scaling Algorithm.				
	Use the Capacity Scaling Algorithm to address a logistics problem				
	where you need to minimize transportation costs in a supply chain				
	network. The network is represented as a graph where nodes				
	represent locations (warehouses, distribution centers, etc.), and edges				
	represent transportation routes with associated costs. Use a dataset				
	representing a supply chain network with nodes, edges, and costs.				
	Strongly Connected Components (SCC) - Tarjan's Algorithm, Kosaraju's				
	Algorithm. Applications - analyzing web page link structures, understanding				
	connected components in social networks.				
	Dynamic Graph Connectivity - Dynamic connectivity algorithms, Eulerian				
	and Hamiltonian paths. Applications - real-time network monitoring,				
	dynamic route planning.				
	Assignments:				
	1. Web Page Link Analysis - Objective: Analyze strongly connected				
	components (SCC) in a web graph using Tarjan's Algorithm.				
	Implement Tarjan's Algorithm to find SCCs in a web graph where				
	nodes represent web pages and edges represent hyperlinks. SCCs	0			
2	help in understanding the structure of the web and identifying	9			
	clusters of interconnected pages. Use a real-world web graph dataset				
	with nodes and edges.				
	2. Dynamic Route Planning - Manage and analyze routes in a				
	transportation network that evolves over time using dynamic				
	connectivity algorithms.				
	Implement dynamic connectivity algorithms to handle a				
	transportation network where edges and nodes may be added or				
	removed over time. The goal is to maintain and update the				
	connectivity information efficiently. Use a dataset representing a				
	transportation network with dynamic updates.				
	Graph Matching - Edmonds' Algorithm for finding maximum matchings.				
	Applications - job assignment, network design.	9			
3	Graph Coloring - Colorings for special classes of graphs (e.g., planar graphs,				
	interval graphs). Applications - frequency assignment in wireless networks,				
	1 5				

1 1 1		1 1	
schedul	lıng	prob	lems

Assignments:

- Job Assignment Optimization Solve job assignment problems using Edmonds' Algorithm.
 - Implement Edmonds' Blossom Algorithm to address job assignment problems where you need to match workers to jobs in a way that maximizes the overall efficiency or minimizes the cost. Use a dataset with job assignments and associated costs or efficiencies.
- 2. Frequency Assignment Allocate frequencies in wireless communication systems using graph coloring techniques.

Apply graph coloring techniques to allocate frequencies to transmitters in a wireless communication network to avoid interference. The goal is to minimize the number of frequencies used while ensuring that adjacent transmitters do not use the same frequency. Use a dataset representing a network of transmitters with potential interference.

Graph Partitioning and Community Detection - Kernighan-Lin Algorithm, Spectral Partitioning. Applications - social network community detection, large-scale data clustering.

Parameterized Algorithms for Graph Problems - Fixed-parameter tractability for vertex cover, feedback vertex set. Applications - network security, bioinformatics.

Assignments:

- 1. Social Network Community Detection Detect communities in a social network using the Kernighan-Lin Algorithm.
 - Apply the Kernighan-Lin Algorithm to detect communities in a social network where nodes represent individuals and edges represent relationships. The goal is to find clusters of highly interconnected individuals. Use a social network dataset with nodes and edges representing social connections.
- 2. Network Security Analysis Identify critical nodes in a network using parameterized algorithms to assess network security.
 - Use parameterized algorithms to identify critical nodes and vulnerabilities in a network. These nodes are crucial for the network's connectivity, and their removal would impact the network's security and robustness. Use a dataset representing a network with nodes and edges, along with possible vulnerabilities.

4

9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Assignment evaluation pattern:

- Correctness and Accuracy (30%) Correct Solution and Implementation.
- Effectiveness and Efficiency (25%) Algorithm Efficiency and Performance Metrics.
- Analytical Depth (25%) Problem Understanding and Solution Analysis.
- Justification and Comparisons (20%) Choice Justification and Comparative Analysis.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each	
 Total of 8 Questions, 	question can have a maximum of 3 subdivisions.	60
each carrying 3 marks	Each question carries 9 marks.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop and implement advanced algorithms for network flow, graph connectivity, and matching, and evaluate their performance on real-world datasets.	К3
CO2	Analyze and compare the efficiency and effectiveness of various graph algorithms, including those for network optimization and community detection.	K4
CO3	Apply advanced graph algorithms to solve practical problems such as network optimization, job assignment, and frequency allocation, demonstrating their utility in real-world scenarios.	К3
CO4	Formulate and solve complex graph-related problems using appropriate algorithms, including those for graph traversal, minimum spanning trees, and network security analysis.	K5
CO5	Critically assess the strengths and limitations of different graph algorithms, and effectively communicate findings and recommendations through detailed reports and presentations.	K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								2
CO2	3	3	3	3								2
CO3	3	3	3	3								2
CO4	3	3	3	3								2
CO5	3	3	3	3	3							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Algorithms	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein	The MIT Press Cambridge	4/e 2023			
2	Algorithms	Robert Sedgewick and Kevin Wayne	Addison-Wesley	4/e, 2023			
3	Graph Algorithms	Shimon Even	Cambridge University Press	2/e, 2011			
4	Graph Theory	Reinhard Diestel	Springer	4/e, 2010			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A Guide to Graph Algorithms	Mingyu Xiao and Ton Kloks	Springer Verlag, Singapore;	1 st , 2022			
2	Network Science	Albert-László Barabási and Márton Pósfai	Cambridge University Press	1 st , 2016			
3	Modern Graph Theory	Bela Bollobas	Springer-Verlag New York Inc	1 st , 1998			
4	Network Flows: Theory, Algorithms, and Applications	Ravindra Ahuja, Thomas Magnanti, and James Orlin	Pearson	1 st , 1993			
5	Introduction to Graph Theory	Douglas B. West	Pearson	2 nd , 2020			
6	Modern Graph Theory Algorithms with Python: Harness the power of graph algorithms and real-world network applications using Python	Colleen M Farrelly and Franck Kalala Mutombo	Packt Publishing	2024			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1 https://onlinecourses.nptel.ac.in/noc21_cs48/preview						
https://onlinecourses.nptel.ac.in/noc21_cs48/preview						
3 https://onlinecourses.nptel.ac.in/noc21_cs48/preview						
4	https://onlinecourses.nptel.ac.in/noc21_cs48/preview					

SEMESTER S5

NETWORKS LAB

(Common to CS/CD/CM/CB/CU/CI)

Course Code	PCCSL507	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- **1.** To provide hands-on experience in network programming using Linux System calls and network monitoring tools.
- **2.** To comprehend the implementation of network protocols and algorithms, and configuration of network layer services using network simulators.

Expt.	Experiments				
No.	Experiments				
	Warm up				
1	Familiarize Linux networking commands - ifconfig, ifplugstatus, iftop, ping, ip,				
1	traceroute, mtr, netstat, whois, nmap, nmcli, speedtest-cli, bmon, nslookup, tcpdump				
	Wireshark based				
	Start your web browser and clear the browser's cache memory. Open Wireshark and start				
	capturing. Then visit any webpage of your choice. Type http in the filter field of the				
	Wireshark and click Apply so that only HTTP messages are displayed. After enough				
	packets have been captured, select the Capture from the pull-down menu and select Stop				
	to stop capturing.				
	Using the captured information, determine the following:				
2	(a) the source IP address and destination IP address of the first GET message				
	(b) the medium format, the language, the encoding, and the character set that the				
	client can accept. (Use the first GET message)				
	(c) the URL of the website and the user agent (Use the first GET message)				
	(d) the source IP address and destination IP address of the first response message				
	(e) the status codes for the first response message.				
	(f) when the HTML file that you are retrieving was last modified at the server				

(g) value of the content-length field of the first response message (h) how long it took from the time the GET message was sent until the response message was received. (Use the timestamps of a GET message and that of the corresponding response message. By default, the time column's value is the amount of time in seconds since Wireshark tracing began.) (i) the HTTP version of your browser. Compose an e-mail and address it to yourself, but do not send it yet. Open the Wireshark and start capturing. Go to your e-mail user agent and send the e-mail. In the Wireshark window, type smtp in the filter field and click Apply. Stop capturing and save the captured file. Using the captured information, answer the following: (a) All SMTP packets have the same two IP addresses. Which one is the IP address of your computer? Which host does the other IP address represent? 3 (b) All SMTP packets have the same two port numbers. Which one is the port number of the SMTP client process? In which range is the client port number? (c) What is the port number of the SMTP server process? (d) Examine the SMTP commands or SMTP response codes in each SMTP packet and write down their meanings. (e) There is an IMF packet that is encapsulated inside an SMTP packet. What is the content of this packet? First, clear the DNS record from the cache memory of your computer. For this, use ipconfig/flushdns on Windows or systemd-resolve --flush-caches on Linux. Next, clear your browser's cache memory. Open the Wireshark and start capturing. In your browser visit your college website. Wireshark starts to capture packets. Type **dns** in the filter field and press Apply so that only DNS messages are displayed. Stop capturing and save the captured file. Using the captured information, answer the following questions: (a) Locate the first DNS query message resolving your college website. What is the packet number (This "packet number" is assigned by Wireshark for listing purposes only; it is NOT a packet number contained in any real packet header.) in the trace for the DNS query message? (b) Is this query message sent over UDP or TCP? (c) Now locate the corresponding DNS response to the initial DNS query. What is the packet number in the trace for the DNS response message? Is this response message received via UDP or TCP? (d) What are the source and destination port numbers for the DNS query message?

	(e) What are the source and destination port numbers for the DNS response message?				
	(f) To what IP address is the DNS query message sent?				
	(g) What is the query message ID number? What is the response message ID number?				
	What is the purpose of this field?				
	(h) What is the length of the flag field in a DNS message?				
	(i) Which bit in the flag field determines whether the message is a query or a response?				
	(j) Which bits are used only in the response message? What is the function of these bits in the response message?				
	(k) How many question records, answer records, authority records, and additional				
	records are present in the query message?				
	(l) How many question records, answer records, authority records, and additional				
	records are present in the response message?				
	Socket programming based				
	Client-Server communication using TCP:- The client inputs an integer N and creates a				
	square matrix of order N by populating the matrix with random numbers in the range				
5	[1,50]. It then sends the matrix to the server which identifies the matrix type (upper				
-	triangular, lower triangular, diagonal). The server then informs the type (as a string) to the				
	client which it prints.				
	Client-Server communication using UDP:- You are very good at communicating in the				
	"new generation" English language with all sorts of abbreviations like tbh , ig , etc. Now				
	design a client-server application as follows: The client inputs a new-generation English				
	sentence from the user and sends it to the server. The server then translates the received				
	sentence to formal English and sends the translated sentence back to the client which it				
	prints.				
	Sample string sent to the server				
6	Really idc about this stupid server as it is of no use irl but atm, I will design one, tbf to the				
	professor.				
	Translated string sent back to the client				
	Really I don't care about this stupid server as it is of no use in real life but at the moment, I				
	will design one, to be fair to the professor.				
	You may consider only the following abbreviations: tbh, ig, tbf, atm, irl, lol, asap, omg,				
	ttyl, idk, nvm				
7	Implement a multi-user chat server using TCP as the transport layer protocol.				
,	Implement a concurrent Time Server application using UDP to execute the program at a				
8	remote server. The client sends a time request to the server which sends its system time				
	Temper 251.51. The orient series a time request to the server which series its system time				

	back. The client then displays the received time value.						
	Develop a concurrent file server that will provide the file requested by the client if it						
9	exists. If not, the server sends an appropriate message to the client. The server should also						
	send its process ID (PID) to clients for displaying along with the file contents or with the						
	message.						
10	Develop a packet-capturing application using raw sockets.						
	Cisco's Packet tracer based						
	Familiarizing router commands						
	(a) Knowing the current mode (user or privileged), switching to privileged mode						
	(b) Switching to configuration mode						
	(c) Obtaining router information such as type, OS, memory stats, interface details etc.						
	(d) Viewing the status of any routing protocols currently configured						
	(e) Showing the routing table						
11	(f) Saving the running configuration						
11	(g) Viewing the command history						
	(h) Viewing the router clock						
	(i) Viewing the list of hosts						
	(j) Displaying the statistics for all the interfaces (Both detailed and brief views)						
	(k) Knowing the controller type (DTE or DCE)						
	(l) Configuring serial and ethernet interfaces - enabling the interface, setting IP						
	address, mask, and clock rate						
	172.16.30.0						
	EO						
	E0 S0 S1 S0						
	F0/0 2501A 2501B 25						
0	250174 250115 25						

router	Interface	I
2621	F0/0	1
2501A	E0	1
2501A	S0	1
2501B	E0	1
2501B	S0	1
2501B	S1	1
05040	00	112

12	Set up static routing for the network shown in Figure 1. Once the routes are set up, display the routing table and verify the connectivity using ping .
13	Implement RIPv2 routing for the network shown in Figure 1. Once the routes are set up,
	display the routing table and verify the connectivity using ping .
14	Implement OSPF routing for the network shown in Figure 1. Once the routes are set up, display the routing table and verify the connectivity using ping .
	You are the network administrator of your college. A small portion of your campus
	network is shown in Figure 2. You want to allow only Host_B to communicate with the
15	network 172.16.10.0. Verify your settings by the following checks:

- (a) Pinging Host_A from Host_B
- (b) Pinging Host_A from Lab_B and Lab_C

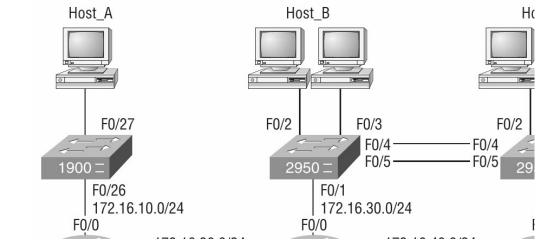
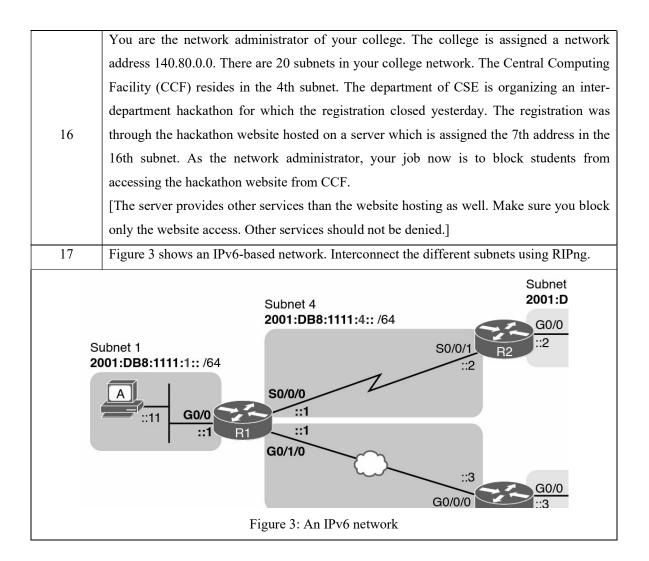



Figure 2: A portion of your college campus network

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with valid			
Preparatory	Execution of work/	inference/	Viva	Darand	Total
work/Design/	troubleshooting/	Quality of	voce	Record	1 Otai
Algorithm	Programming	Output			
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the working of application layer protocols by analyzing the pertinent headers in actual data packets captured using network monitoring tools.	К3
CO2	Exploit the client server paradigm to develop real time networking applications using transport layer protocols.	К3
CO3	Employ IPv4 and IPv6 addressing, subnetting to efficiently design networks.	К3
CO4	Simulate core networking concepts using a network simulator.	К3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							3
CO2	3	3	3	3		2						3
CO3	3	3	3	3								3
CO4	3	3	3	3	3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Unix Network Programming, Volume 1: The Sockets Networking API	W. Richard Stevens, Andrew M. Rudoff, Bill Fenner	Pearson Education	3/e, 2004		
2	CCNA Cisco certified network associate study guide Exam 640-802 6	Todd Lammle	Wiley	6/e, 2007		
3	Beej's Guide to Network Programming: using Internet Sockets	Brian "beej Jorgensen" Hall	Amazon Digital Services	2019		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Networks: A Top- Down Approach	Behrouz A Forouzan	McGraw Hill	SIE, 2017		
2	Computer Networking: A Top- Down Approach Featuring Internet	J. F. Kurose and K. W. Ross	Pearson Education	8/e, 2022		

Video Links (NPTEL, SWAYAM)				
No.	Link ID			
1	https://nptel.ac.in/courses/106106091			

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

• Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.

• Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 5

MACHINE LEARNING LAB

(Common to CS/CA)

Course Code	PCCSL508	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

1. To give the learner a practical experience of the various machine learning techniques and be able to demonstrate them using a language of choice.

Expt. No.	Experiments
	Implement linear regression with one variable on the California Housing dataset to predict
	housing prices based on a single feature (e.g., the average number of rooms per dwelling).
	Tasks:
1	Load and preprocess the datase.
	• Implement linear regression using both gradient descent and the normal equation.
	Evaluate the model performance using metrics such as Mean Squared Error
	(MSE) and R-squared.
	Visualize the fitted line along with the data points.
	Implement polynomial regression on the Auto MPG dataset to predict miles per gallon
	(MPG) based on engine displacement. Compare polynomial regression results with linear
	regression.
	Tasks:
2	Load and preprocess the dataset.
	Implement polynomial regression of varying degrees.
	Compare the polynomial regression models with linear regression using metrics
	such as MSE and R-squared.
	Visualize the polynomial fit.
	Implement Ridge and Lasso regression on the Diabetes dataset. Compare the performance
3	of these regularized models with standard linear regression.
	Tasks:

	Load and preprocess the dataset.
	Implement Ridge and Lasso regression.
	Tune hyperparameters using cross-validation.
	Compare performance metrics (MSE, R-squared) with standard linear regression.
	Estimate the parameters of a logistic regression model using MLE and MAP on the Breast
	Cancer Wisconsin dataset. Compare the results and discuss the effects of regularization.
	Tasks:
	Load and preprocess the dataset.
4	Implement logistic regression with MLE.
	• Apply MAP estimation with different regularization priors (L1 and L2
	regularization).
	• Compare the performance and parameter estimates with MLE and MAP.
	Use MLE and MAP to estimate the parameters of a multinomial distribution on the 20
	Newsgroups dataset. Explore the impact of different priors on the estimation.
	Tasks:
5	Load and preprocess the dataset.
	Implement MLE for multinomial distribution parameter estimation.
	 Apply MAP estimation with various priors (e.g., Dirichlet priors).
	Compare results and evaluate the effect of different priors.
	Implement a logistic regression model to predict the likelihood of a disease using the Pima
	Indians Diabetes dataset. Compare the performance with and without feature scaling.
	Tasks:
6	Load and preprocess the Pima Indians Diabetes dataset.
	Implement logistic regression for binary classification.
	 Evaluate model performance with and without feature scaling.
	 Analyze metrics such as accuracy, precision, recall, and F1-score.
	Implement a Naïve Bayes classifier to categorize text documents into topics using the 20
	Newsgroups dataset. Compare the performance of Multinomial Naïve Bayes with
	Bernoulli Naïve Bayes.
	Tasks:
7	Load and preprocess the 20 Newsgroups dataset.
7	Implement Multinomial Naïve Bayes and Bernoulli Naïve Bayes classifiers.
	• Evaluate and compare the performance of both models using metrics such as
	accuracy and F1-score.
	Discuss the strengths and weaknesses of each Naïve Bayes variant for text
	classification.
	1

	Implement the K-Nearest Neighbors (KNN) algorithm for image classification using the
	Fashion MNIST dataset. Experiment with different values of K and analyze their impact
	on model performance.
	Tasks:
8	 Load and preprocess the Fashion MNIST dataset.
	Implement KNN for multi-class classification.
	 Experiment with different values of K and evaluate performance.
	 Discuss the impact of different K values on model accuracy and computational
	efficiency.
	Implement a Decision Tree classifier using the ID3 algorithm to segment customers based
	on their purchasing behavior using the Online Retail dataset. Analyze the tree structure
	and discuss the feature importance.
	Tasks:
9	Load and preprocess the Online Retail dataset.
	Implement Decision Tree using the ID3 algorithm.
	Visualize the decision tree and analyze feature importance.
	Discuss how the tree structure helps in understanding customer behavior.
	Implement and compare Logistic Regression and Decision Trees on the Adult Income
	dataset for predicting income levels. Evaluate both models based on performance metrics
	and interpretability.
	Tasks:
10	Load and preprocess the Adult Income dataset.
	Implement both Logistic Regression and Decision Trees.
	• Compare the models based on metrics such as accuracy, precision, recall, and F1-
	score.
	Discuss the interpretability of both models and their suitability for the dataset.
	Implement a Linear Support Vector Machine (SVM) to classify the Iris dataset. Visualize
	the decision boundary and discuss how the margin is determined.
	Tasks:
11	Load and preprocess the Iris dataset.
	• Implement a Linear SVM for binary classification (e.g., classify Setosa vs. Non-
	Setosa).
	Visualize the decision boundary and margin.
	Discuss the concept of the margin and how it influences classification.
	Implement and compare the performance of SVM classifiers with linear, polynomial, and
12	RBF kernels on the Fashion MNIST dataset. Analyze the advantages and disadvantages of
	each kernel type.

	Tasks:
	 Load and preprocess the Fashion MNIST dataset.
	 Implement SVM with linear, polynomial, and RBF kernels.
	 Compare the classification performance for each kernel.
	 Discuss the strengths and weaknesses of each kernel type.
	Implement and train a Multilayer Feed-Forward Network (MLP) on the Wine Quality
	dataset. Experiment with different numbers of hidden layers and neurons, and discuss how
	these choices affect the network's performance.
	Tasks:
13	Load and preprocess the Wine Quality dataset.
	Design and implement an MLP with varying architectures (different hidden layers)
	and neurons).
	Train and evaluate the network.
	Discuss the impact of architecture choices on performance.
	Implement and compare the performance of a neural network using different activation
	functions (Sigmoid, ReLU, Tanh) on the MNIST dataset. Analyze how each activation
	function affects the training process and classification accuracy.
14	Tasks:
14	 Load and preprocess the MNIST dataset.
	Implement neural networks using Sigmoid, ReLU, and Tanh activation functions.
	Train and evaluate each network.
	Compare training times, convergence, and classification accuracy.
	Implement and perform hyperparameter tuning for a neural network on the Fashion
	MNIST dataset. Experiment with different learning rates, batch sizes, and epochs, and
	discuss the impact on model performance.
	Tasks:
15	 Load and preprocess the Fashion MNIST dataset.
	• Experiment with different hyperparameters (learning rate, batch size, epochs).
	Train and evaluate the network.
	Discuss how hyperparameter choices affect model performance.
	Implement and compare hierarchical (agglomerative) and partitional (K-means) clustering
	algorithms on the Mall Customers dataset. Discuss the strengths and weaknesses of each
	method based on clustering results and evaluation metrics.
16	Tasks:
	Load and preprocess the Mall Customers dataset.
	 Apply both hierarchical (agglomerative) and K-means clustering.
	 Compare results using metrics such as inertia, silhouette score, and clustering
	Compare results using metries such as metria, simouette score, and clustering

	-:
	visualization.
	Discuss the advantages and disadvantages of each clustering method.
	Implement and apply K-means clustering to the Digits dataset. Experiment with different
	numbers of clusters and evaluate the clustering results using metrics such as inertia and
	silhouette score. Analyze how the choice of K affects clustering performance.
17	Tasks:
1,	 Load and preprocess the Digits dataset.
	• Implement K-means clustering with various numbers of clusters.
	 Evaluate clustering performance using inertia and silhouette score.
	 Analyze the impact of the number of clusters on clustering quality.
	Implement bootstrapping and cross-validation on the Iris dataset. Compare the model
	performance metrics (e.g., accuracy, F1-score) obtained using these resampling methods.
	Discuss the advantages and disadvantages of each method.
	Tasks:
18	Load and preprocess the Iris dataset.
	 Implement bootstrapping to generate multiple samples and evaluate the model.
	Implement k-fold cross-validation and evaluate the model.
	Compare the performance metrics and discuss the pros and cons of each
	resampling method.
	Implement bagging and boosting ensemble methods on the Titanic dataset. Compare the
	performance of both methods in terms of accuracy, precision, recall, and F1-score.
	Discuss how each method improves model performance and their respective strengths and
	weaknesses.
	Tasks:
10	Load and preprocess the Titanic dataset.
19	• Implement bagging using a base classifier (e.g., decision tree) and evaluate
	performance.
	• Implement boosting using a boosting algorithm (e.g., AdaBoost) and evaluate
	performance.
	Compare performance metrics and discuss the strengths and weaknesses of each
	method.
	Investigate the bias-variance tradeoff using polynomial regression on the Boston Housing
•	dataset. Plot the training and validation errors for various polynomial degrees and discuss
	the tradeoff between bias and variance.
20	Tasks:
	 Load and preprocess the Boston Housing dataset.
	Implement polynomial regression with varying degrees.

- Plot training and validation errors for each degree.
- Discuss the bias-variance tradeoff and its impact on model performance.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Conduct of experiment/	Result with valid			
Execution of work/	inference/	Viva	Darand	T-4-1
troubleshooting/	Quality of	voce	Record	Total
Programming	Output			
15	10	10	5	50
	Execution of work/ troubleshooting/ Programming	Execution of work/ inference/ troubleshooting/ Quality of Programming Output	Execution of work/ inference/ Viva troubleshooting/ Quality of voce Programming Output	Execution of work/ inference/ Viva troubleshooting/ Quality of voce Programming Output Record

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand complexity of Machine Learning algorithms and their limitations;	K2
CO2	Understand modern notions in data analysis-oriented computing;	K2
CO3	Apply common Machine Learning algorithms in practice and implement their own.	К3
CO4	Performing experiments in Machine Learning using real-world data.	К3

Note: K1-Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							3
CO2	3	3	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3		3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Introduction to Machine Learning	Ethem Alpaydin	MIT Press	4/e, 2020
2	Machine Learning using Python	Manaranjan Pradhan U Dinesh Kumar	Wiley	1/e, 2019
3	Machine Learning: Theory and Practice	M.N. Murty, V.S. Ananthanarayana	Universities Press	1/e, 2024

	Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Data Mining and Analysis: Fundamental Concepts and Algorithms	Mohammed J. Zaki Wagner Meira	Cambridge University Press	1/e, 2016	
2	Neural Networks for Pattern Recognition	Christopher Bishop	Oxford University Press	1/e, 1998	

	Video Links (NPTEL, SWAYAM)				
No.	No. Link ID				
1	https://archive.nptel.ac.in/courses/106/105/106105152/				
2	https://archive.nptel.ac.in/courses/106/106/106106139/				
3	https://nptel.ac.in/courses/106106202				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.

• Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted