Subject: LINEAR ALGEBRA AND CALCULUS (MAT 101)

Module I			
$\begin{aligned} & \hline \text { SI. } \\ & \text { No } \end{aligned}$	Questions	Marks	KU/KTU
1.	Solve the following system of equations? $\begin{gathered} y+z-2 w=0 \\ 2 x-3 y-3 z+6 w=2 \\ 4 x+y+z-2 w=4 \end{gathered}$	7	Model question (KTU-2019)
2.	Determine the rank of the matrix $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -2 & -4 & 2 \\ 3 & 6 & -3\end{array}\right]$	3	Model question (KTU-2019)
3.	Solve the following by Gauss elimination $Y+z-2 w=0,2 x-3 y-3 z+6 w=2,4 x+y+z-2 w=4$	7	Model question (KTU-2019)
4.	Diagonalize the matrix $\left[\begin{array}{ccc}-1 & 2 & -2 \\ 2 & 4 & 1 \\ 2 & 1 & 4\end{array}\right]$	7	Model question (KTU-2019)
5.	Write down the Eigen values $\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]$	3	Model question (KTU-2019)
6.	What kind of conic section the quadratic from $3 x_{1}^{2}+22 x_{1} x_{2}+3 x_{2}^{2}=0$ represents and transform it to principal axes	7	$\begin{gathered} \text { KTU } \\ \text { JAN-2016 } \end{gathered}$
7.	Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{ccc} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{array}\right]$	7	$\begin{gathered} \text { KTU } \\ \text { JAN-2016 } \end{gathered}$
8.	Determine whether the matrix is orthogonal $\left[\begin{array}{ccc} 1 & 0 & -0 \\ 1 & 1 / \sqrt{2} & -1 / \sqrt{2} \\ 0 & 1 / \sqrt{2} & 1 / \sqrt{2} \end{array}\right]$	3	$\begin{gathered} \text { KTU } \\ \text { JUN-2016 } \end{gathered}$
9.	Reduce the matrix $A=\left[\begin{array}{rrrr}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2\end{array}\right]$ to row echelon form. Hence find its rank	7	$\begin{gathered} \text { KTU } \\ \text { Aug-2016 } \end{gathered}$
10	Find out what type of conic section the quadratic form $17 x_{1}{ }^{2}-30 x_{1} x_{2}+17 x_{2}{ }^{2}=128$ and transform it to principal axes	7	$\begin{gathered} \text { KTU } \\ \text { Dec-216 } \end{gathered}$
11	Solve the system of equation by Gauss elimination method $3 x+3 y+2 z=1$ $\begin{aligned} & x+2 y=4 \\ & 10 y+3 z=-2 \\ & 2 x-3 y-z=5 \end{aligned}$	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2016 } \end{gathered}$

12	$A=\left[\begin{array}{ccc}3 & 0 & 2 \\ 0 & 2 & 0 \\ -2 & 0 & 0\end{array}\right] \quad$ find an orthogonal matrix P that diagonalizes A	3	$\begin{gathered} \text { KTU } \\ \text { Feb-2017 } \end{gathered}$
13	Reduce to echelon form and hence find the rank of the matrix $A=\left[\begin{array}{ccc}3 & 0 & 2 \\ -6 & 42 & 24 \\ 21 & -21 & 0\end{array}\right]$	7	$\begin{gathered} \text { KTU } \\ \text { Mar } 2017 \end{gathered}$
14.	Find the rank of the matrix $A=\left[\begin{array}{ccc}2 & -2 & 0 \\ 0 & 4 & 8 \\ 2 & 0 & 4\end{array}\right]$	3	$\begin{gathered} \text { KTU } \\ \text { Mar } 2017 \end{gathered}$
15	If 2 is an eigen value of $\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ without using its characteristic equation, find other eigen values .Also find the eigen values of $A^{3}, A^{\top}, A^{-1}, 5 A, A-31$ and Adj A	7	$\begin{gathered} \text { KTU } \\ \text { Dec } 2016 \end{gathered}$
16	What kind of conic section or pair of straight line is given by the quadratic form $3 x^{2}+22 x y+3 y^{2}=0$ express $(x, y)^{\top}$ interms of new coordinates.	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2016 } \end{gathered}$
17	Determine the rank of the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 5\end{array}\right]$	3	$\begin{gathered} \text { KTU } \\ \text { DEC-2019 } \end{gathered}$
18	Solve the system of equations by Gauss elimination method $\begin{aligned} & x+2 y+3 z=1 \\ & 2 x+3 y+2 z=2 \\ & 3 x+3 y+4 z=1 \end{aligned}$	7	$\begin{gathered} \text { KTU } \\ \text { DEC-2019 } \end{gathered}$
19	Find the eigen values and eigen vectors of $A=$ $\left[\begin{array}{ccc} 4 & 2 & -2 \\ 2 & 5 & 0 \\ -2 & 0 & 3 \end{array}\right]$	7	$\begin{gathered} \text { KTU } \\ \text { DEC-2019 } \end{gathered}$
20	Find the values of μ and λ for which the system of equations $\begin{aligned} & 2 x+3 y+5 z=9 \\ & 7 x+3 y+-2 z=8 \\ & 2 x+3 y+\lambda z=\mu \end{aligned}$ Has i)no solution, ii)a unique solution iii)infinite solution	7	$\begin{gathered} \text { KTU } \\ \text { DEC-2019 } \end{gathered}$
21	Find the matrix of transformation that diagonalize the matrix $A=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$.Also write the diagonal matrix.	7	$\begin{gathered} \text { KTU } \\ \text { DEC-2019 } \end{gathered}$
Module II			
1.	Let $Z=f(x, y)$ where $x=r \cos \theta, y=r \sin \theta$ prove that $\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+1 / r^{2}\left(\frac{\partial z}{\partial \theta}\right)^{2}$	7	Model question (KTU-2019)
2.	show that the function $u(x, t)=\sin (x-c t)$ is a solution of the equation	3	Model question

			(KTU-2019)
3.	Use Lagrange multiplier to determine the dimensions of a rectangular box open at the top having a volume $32 \mathrm{ft}^{3}$ and requiring the least amount of material for its construction.	7	Model question (KTU-2019)
4.	Find $f_{x}(1,3)$ and $f_{y}(1,3)$ for the function $f(x, y)=$ $2 x^{3} y^{2}+2 y+4 x$	3	Model question (KTU-2019)
5.	Find the slope of the surface $Z=x^{2} y+5 y^{3}$ in the X direction at the point(1,-2)	3	Model question (KTU-2019)
6.	Let $W=\sqrt{x 2+y 2+z 2} \quad, x=\cos \theta, y=\sin \theta, z=$ $\tan \theta$. Use chain rule to find $\frac{d w}{d \theta}$ when $\theta=\pi / 4$	7	Model question (KTU-2019)
7.	Locate all relative maxima ,relative minima and saddle points of $f(x, y)=x y+a^{3} / x+b^{3} / y(a \neq 0, b$ $\neq 0$	7	Model question (KTU-2019)
8.	Find the points on the sphere $x^{2}+y^{2}+z^{2}=4$ that are closest to and farthest from the point $(3,1,-1)$	3	Model question (KTU-2019)
9.	Given the function $W=x y+z$ use chain rule to find the instantaneous rate of change of W at each point along the curve $x=\cos t, y=\sin t, z=t$	3	Model question (KTU-2019)
10.	Use the chain rule to find $d \frac{d w}{d s}$ at $s=\frac{1}{2}$ if $w=r^{2}-r \tan \theta$, $r=\sqrt{s}, \theta=\pi s$	3	Model question (KTU-2019)
11.	11. Find the slope of sphere $x^{2}+y^{2}+z^{2}=1$ in the $y-$ direction at $\left(\frac{21-2}{33}\right)$	3	Model question (KTU-2019)
12.	Locate all relative maxima, relative minima and saddle point if any for $f(x, y)=y^{2}+x y+4 y+2 x+3$	7	Model question (KTU-2019)
13	Given $f=e^{x} \sin y+e^{y} \cos x$, show that the function satisfies the Laplace equation $f_{x x}+f_{y y}=0$	3	$\begin{gathered} \text { KTU } \\ \text { Apr-2018 } \end{gathered}$
14	Let $w=4 x^{2}+4 y^{2}+z^{2}$, where $x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi$. Find $\frac{\partial w}{\partial \rho}, \frac{\partial w}{\partial \varphi}, \frac{\partial w}{\partial \theta}$ using chain rule.	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2018 } \end{gathered}$
15	Locate all relative extrema and saddle points of the function $f(x, y)=2 x y-x^{3}-y^{2}$	7	$\begin{gathered} \text { KTU } \\ \text { Apr-2018 } \end{gathered}$
16	If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=\frac{-9}{(x+y+z)^{2}}$	7	$\begin{gathered} \text { KTU } \\ \text { June-2016 } \end{gathered}$
17	If $f(x, y)=x e^{y}+5 y$ find the slope of $f(x, y)$ in the $x-$ direction at $(4,0)$	3	$\begin{gathered} \text { KTU } \\ \text { DEC-2019 } \end{gathered}$
18	Show that $\quad \frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$, where $z=e^{x}$	3	$\begin{gathered} \text { KTU } \\ \text { DEC-2019 } \end{gathered}$

	$\sin y+e^{x} \cos y$		
19	Let f be a differentiable function of three variables and suppose that $w=f(x-y, y-z, z-x)$, show that $\frac{\partial w}{\partial x}+$ $\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z}=0$	7	$\begin{gathered} \text { KTU } \\ \text { DEC-2019 } \end{gathered}$
20	Locate all relative extrema of $f(x, y)=4 x y-y^{4}-x^{4}$	7	$\begin{gathered} \text { KTU } \\ \text { DEC-2019 } \end{gathered}$
21	Find the local linear approximation L to the function $f(x, y)=\sqrt{x^{2}}+y^{2}$ at the point $P(3,4)$.Compare the error in approximating f by L at the point Q $(3.04,3.98)$ with distance PQ.	7	$\begin{gathered} \text { KTU } \\ \text { DEC-2019 } \end{gathered}$
22	The radius and height of a right circular cone are measured with errors of at most 1% and 4% respectively.Use differentials to approximate the maximum percentage error in the calculated volume.	7	$\begin{gathered} \text { KTU } \\ \text { DEC-2019 } \end{gathered}$
Module III			
1	use double integral to find the area of the region enclosed between the parabolas $y=\frac{1}{2} X^{2}$ and the line $y=2 x$	3	Model question (KTU-2019)
2	Use polar coordinates to evaluate the area of the circle $X^{2}+Y^{2}=4$	3	Model question (KTU-2019)
3	Evaluate the integral $\int_{0}^{4} \int_{\sqrt{y}}^{2} \mathrm{e}^{\mathrm{x} 3} \mathrm{dxdy}$ by changing the order of integration	7	Model question (KTU-2019)
4	Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=4 \quad$ and the planes $y+z=4$ and $z=0$	7	Model question (KTU-2019)
5	Use spherical coordinates to find the volume of the solid bounded above by the sphere $x^{2}+y^{2}+z^{2}=16$ and below by the cone $Z=\sqrt{x 2+y 2}$	7	Model question (KTU-2019)
6	Evaluate $\iiint x d x d y d z$ where v is the volume of the tetrahedron bounded by the plane $x=0, y=0, z=0, x+y+z=a$	7	$\begin{gathered} \text { Model } \\ \text { question } \\ \text { (KTU-2019) } \end{gathered}$
7	Evaluate $\iiint \sqrt{1-x^{2}-y^{2}-z^{2}} d x d y d z$ taken throughout the volume of the spherex ${ }^{2}+y^{2}+z^{2}=1$ by transforming to spherical polar coordinates	3	Model question (KTU-2019)
8	Find the area of the region R enclosed between the parabola $y=\frac{x 2}{2} \quad$ and the line $y=2 x$	7	Model question (KTU-2019)
9	Use triple integral to find the volume of the solid within the cylinder $x^{2}+y^{2}=9$ and between the planes $z=1$ and $x+z=5$	7	Model question (KTU-2019)
10	$\text { Evaluate } \int_{0}^{1} \int_{0}^{1} \frac{d y d x}{\sqrt{1-x^{2}} \sqrt{1-y^{2}}}$	3	Model question

			(KTU-2019)
11	Use the integral to find the area enclosed by the given curves $y=\sin x$ and $y=\cos x$ in $0 \leq x \leq \frac{\pi}{4}$	7	Model question (KTU-2019)
12	Evaluate $\int_{0}^{1} \int_{0}^{y^{2}} \int_{-1}^{z} z d x d y d z$	7	Model question (KTU-2019)
13	Evaluate $\iint_{R} x y d A$, where R is the region bounded by the curves $y=x^{2}$ and $x=y^{2}$.	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2017 } \end{gathered}$
14	Evaluate $\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} 2 \mathrm{ydxdy}$	3	$\begin{gathered} \text { KTU } \\ \text { Dec-2016 } \end{gathered}$
15	Evaluate $\int_{-1}^{2} \int_{0}^{2} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$	3	$\begin{gathered} \text { KTU } \\ \text { Apr-2018 } \end{gathered}$
16	Use a triple integral to find the volume of the solid within the cylinder $x^{2}+y^{2}=9$ and between the planes $z=1$ and $x+z=5$.	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2017 } \end{gathered}$
17	Find the mass of the square lamina with vertices $(0,0)(1,0)(1,1)$ and (0,1) and density function x^{2} y	3	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
18	Evaluate $\iint_{R} d x d y$ where R is the region boundedby the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
19	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y b y$ changing to polar coordinates	3	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
20	Evaluate $\int_{0}^{2} \iint_{\frac{y}{2}}^{1} \mathrm{e}^{\mathrm{x}^{2}} \mathrm{dx} \mathrm{dy}$ by reversing the order of integration	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
21	Use triple integrals to find the volume of the solid within the cylinder $x^{2}+y^{2}=9$ and the planes $z=1$ and $\mathrm{x}+\mathrm{z}=5$	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
22	Use double integral to find2 the area of the region enclosed between the parabolas $y=\frac{x^{2}}{2}$ and $y=2 x$	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
Module IV			
1	Test the convergence of the series $\sum_{k=1}^{\infty} \frac{\mathrm{k}}{1 \mathrm{k}+1}$	3	Model question (KTU-2019)
2	Test the convergence of the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k}$ using Leibnitz test.	3	Model question (KTU-2019)

3	Check Whether the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{(2 k)!}{(3 k-2)!}$ Is absolutely convergent, conditionally convergent or divergent.	7	Model question (KTU-2019)
4	Check the convergence of the series $\frac{3}{4}+\frac{3.4}{4.6}+\frac{3.4 .5}{4.6 .8}$ +........	3	Model question (KTU-2019)
5	Determine Whether the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{3^{2 k-1}}{k^{2}+1}$ is absolutely convergent.	7	Model question (KTU-2019)
6	Show that the series $\sum_{\mathrm{k}=1}^{\infty} \frac{\text { cosk }}{\mathrm{k}^{2}}$ is convergent	3	$\begin{gathered} \text { KTU } \\ \text { JAN-2016 } \end{gathered}$
7	Test the convergence of the series $1+\frac{1.2}{1.3}+\frac{1.2 .3}{1.3 .5}+$	3	$\begin{gathered} \text { KTU } \\ \text { JAN-2016 } \end{gathered}$
8	Check whether the series $\sum_{\mathrm{k}=1}^{\infty} \frac{1}{12 \mathrm{k}-1}$ converges or not.	3	$\begin{gathered} \text { KTU } \\ \text { JUN-2016 } \end{gathered}$
9	Test whether the series converges or diverges $\Sigma_{k=1}^{\infty} \frac{k}{2^{k}}$	3	$\begin{gathered} \text { KTU } \\ \text { Aug-2016 } \end{gathered}$
10	Determine whether the series $\sum_{k=1}^{\infty}\left(\frac{3}{4}\right)^{k+2}$ converges and if so find its sum	3	$\begin{gathered} \text { KTU } \\ \text { Dec-216 } \end{gathered}$
11	Test the convergence of $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2016 } \end{gathered}$
12	Show that the series $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$ converges	3	$\begin{gathered} \text { KTU } \\ \text { Feb-2017 } \end{gathered}$
13	Find the interval of convergence and radius of convergence of the infinite series $\sum_{n=0}^{\infty} n!x^{n}$	7	$\begin{gathered} \text { KTU } \\ \text { June-2017 } \end{gathered}$
14	Determine whether the series $\Sigma_{k=0}^{\infty} \frac{5}{4^{k}}$ is converges, if so find the sum	3	$\begin{gathered} \text { KTU } \\ \text { Apr-2018 } \end{gathered}$
15	Determine whether the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k+7}{k(k+4)}$ is absolutely convergence.	7	$\begin{gathered} \text { KTU } \\ \text { Apr-2018 } \end{gathered}$
16	Test the convergence of $\frac{x}{1.2}+\frac{x^{2}}{2.3}+\frac{x^{3}}{3.4}+\ldots$	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2016 } \end{gathered}$
17	Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k}{2 k+1}$	3	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
18	Check the convergence of $\sum_{k=1}^{\infty} \frac{1}{k^{\frac{k}{2}}}$	3	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$

19	(a)Find the general terms of the series $1+\frac{1.2}{1.3}+\frac{1.2 .3}{1.3 .5}$ $+\frac{1.2 .3 .4}{1.35 .7}+\ldots$ and use the ratio test to show that the series converges. (b)Test whether the following series is absolutely convergent or conditionally convergent $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt{k(k+1)}}$	7	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
20	(a)Test the convergence of $\frac{x}{1.2}+\frac{x^{2}}{2.3}+\frac{x^{3}}{3.4}+\ldots+\frac{x^{k}}{k(k+1)}+\ldots$ (b)Test the convergence of the series $\sum_{k=1}^{\infty} \frac{(k+1)!}{4!k!4^{k}}$	7 7	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
Module V			
1	Find the values to which the Fourier Series of $f(x)=x$ for $-\pi \leq x \leq \pi$ with $f(x+2 \pi)=f(x)$	7	$\begin{gathered} \text { KTU } \\ \text { Apr-2018 } \end{gathered}$
2	State the conditions for which a function $f(x)$ can be represented as fourier series.	3	$\begin{gathered} \text { KTU } \\ \text { Apr-2018 } \end{gathered}$
3	Discuss the convergence of a Fourier series of a periodic function $f(x)$ of period 2π	3	$\begin{gathered} \text { KTU } \\ \text { Dec-2017 } \end{gathered}$
4	Find the Fourier cosine series representation of $f(x)$ $=x, 0 \leq x \leq \pi$.Also find the Fourier series representation $f(x)$ if $f(x)$ is periodic function with period π	3	$\begin{gathered} \text { KTU } \\ \text { Dec-2017 } \end{gathered}$
5	Find the Fourier series of the periodic function $f(x)$ of period 4 , where $f(x)=f(x)=\left\{\begin{array}{rr}-2, & -2<x \leq 0 \\ x, & 0<x<2\end{array}\right.$ and deduce that i. $\quad 1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots=\frac{\pi^{2}}{8}$ ii. $\quad 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{\pi}{4}$	7	$\underset{\substack{\text { KTU } \\ \text { Apr-2018 }}}{ }$
6	Find the Fourier series of $\mathrm{f}(\mathrm{x})=\mathrm{x},-\pi \leq \mathrm{x} \leq \pi$	3	$\begin{gathered} \text { KTU } \\ \text { DEC-2017 } \end{gathered}$
7	Obtain the half range cosine series of $f(x)=x^{2}, 0 \leq x$ $\leq C$	3	$\begin{gathered} \text { KTU } \\ \text { Dec- } 2017 \end{gathered}$
8	Obtain the Fourier series of $f(x)=f(x)=$ $\begin{cases} & -\frac{\pi}{4},-\pi<x<0 \\ \frac{\pi}{4}, & 0<x<\pi\end{cases}$	7	$\begin{gathered} \text { KTU } \\ \text { Kec-2017 } \end{gathered}$

9	Find the half range cosine series of $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<\mathrm{x}<1$	3	$\begin{gathered} \text { KTU } \\ \text { Apr-2018 } \\ \hline \end{gathered}$
10	Find the Fourier series of $f(x)= \begin{cases}-1+x, & -\pi<x \\ 1+x, & 0<x<\pi\end{cases}$	7	$\begin{gathered} \text { KTU } \\ \text { Apr-2018 } \end{gathered}$
11	Find the half range sine series of $f(x)=$ $\left\{\begin{array}{c} x, 0<x<1 \\ 2-x, 1<x<2 \end{array}\right.$	7	Model question (KTU-2019)
12	Find the half range sine series of $f(x)=$ $\left\{\begin{array}{l} \frac{2 \mathrm{k} 1}{\mathrm{x}} \quad \text { if } 0<x<1 / 2 \\ \frac{2 \mathrm{k}(\mathrm{I}-\mathrm{x})}{1} \text { if } \frac{1}{2}<x<1 \end{array}\right.$	7	Model question (KTU-2019)
13	obtain the fourier series for $f(x)=e^{-x}$ in the interval $0<x<2 \pi$ with $f(x+2 \pi)=f(x)$. Hence deduce the value of $\sum_{n=2}^{\infty}(-1)^{n} / 1+n^{2}$	7	Model question (KTU-2019)
14	Find the fourier series of the function $f(x)=x^{2}-2$ $\leq x<2 f(x+4)=f(x)$	7	Model question (KTU-2019)
15	Find the Maciaurian series expansion of $f(x)=(1+x)^{k}$ for $\mathrm{lxI}<1$ where k is any real number	7	Model question (KTU-2019)
16	Find the Taylors series of $\frac{1}{x+2}$ about $x=1$	3	Model question (KTU-2019)
17	Find the Taylor series for $f(x)=\cos x$ about $x=\pi / 2$ up to third degree terms	3	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
18	Find the Fourier half range sine series of $f(x)=e^{x}$ in 0 $<x<1$	3	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
19	(a)Find the Fourier series of periodic function with period 2 which is given below $f(x)=$ $\left\{\begin{array}{c}-x ;-1 \leq x \leq 0 \\ x ; 0 \leq x \leq 1\end{array}\right.$.Hence prove that $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .=\frac{\pi^{2}}{8}$ (b) Find the half range cosine series for $f(x)=$ $\left\{\begin{array}{c} \mathrm{kx} \quad ; 0 \leq \mathrm{x} \leq \mathrm{L} / 2 \\ \mathrm{k}(\mathrm{~L}-\mathrm{x}) ; \mathrm{L} / 2 \leq \mathrm{x} \leq \mathrm{L} \end{array}\right.$	7 7	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$
20	(a)Find the Fourier series of $f(x)=\left\{\begin{array}{c}0 ;-\pi<x<0 \\ x^{2} ; 0<x<\pi\end{array}\right.$ (b)Obtain the Fourier series expansion for $f(x)=x^{2},-\Pi$ $<x<\Pi$	7 7	$\begin{gathered} \text { KTU } \\ \text { Dec-2019 } \end{gathered}$

MODULE 1HARMONIC OSCILLATIONS \& WAVES		$\begin{gathered} \hline \text { Mark } \\ \mathrm{s} \end{gathered}$	Year
1	What is the effect of damping on the frequency and time period of an oscillator?	2	$\begin{aligned} & \text { May } \\ & \text { 19, } \\ & \text { July } \\ & \text { '16 } \\ & \text { KTU } \end{aligned}$
2	Explain the phenomenon of amplitude resonance and obtain the value of resonant frequency.	$\begin{aligned} & 4, \\ & 2 \end{aligned}$	May 19 KTU, Sep 2020
3	A wave is represented by $\psi=3^{*} 10^{-3} \cos \left(8.4^{*} 10^{13} \mathrm{t}+2.8^{*} 10^{5} \mathrm{Z}\right) \mathrm{Vm}^{-1}$. Find the amplitude, frequency, wavelength and wave velocity. Where z in meter and t in second.	4	$\begin{aligned} & \text { May;1 } \\ & 9 \text { KTU } \end{aligned}$
4	Solve the differential equation of a damped harmonic oscillator. Explain the time displacement curve of over damped, critically damped and under damped cases.	6	$\begin{aligned} & \text { May;1 } \\ & 9 \text { KTU } \end{aligned}$
5	What is the condition for critical damping in the case of a damped harmonic oscillator? With the help of the expression for displacement write how this condition affects the amplitude of the oscillator	4	$\begin{aligned} & \hline \text { Dec } \\ & \text { '18 } \\ & \text { KTU } \end{aligned}$
6	Distinguish between transverse and longitudinal waves.	2	$\begin{aligned} & \text { May'1 } \\ & 9 \text { KTU } \end{aligned}$
7	What do you mean by Quality factor of an oscillator	2	$\begin{aligned} & \text { Jan '16 } \\ & \text { KTU } \end{aligned}$
8	What is resonance in forced oscillation? Give one example	2	$\begin{aligned} & \text { Dec } \\ & \text { '16KTU } \end{aligned}$
9	Frame and solve the differential equation of a forced harmonic oscillator	6	$\begin{aligned} & \hline \text { July } \\ & \text { '16 } \\ & \text { KTU } \end{aligned}$
1	Distinguish between longitudinal waves and transverse waves	2	$\begin{aligned} & \hline \text { April } \\ & \text { '18KTU } \end{aligned}$
1	What is meant by sharpness of resonance	4	June '16KTU
1	Frame the differential equation of a forced harmonic oscillator and obtain its solution.	6	$\begin{aligned} & \text { Dec'18 } \\ & \text { KTU, } \\ & \text { Sep } \\ & \hline \end{aligned}$

			2020
$\begin{aligned} & \mathbf{1} \\ & \mathbf{3} \end{aligned}$	Considering transverse vibration of stretched string derive one dimensional wave equation.	4	$\begin{aligned} & \text { Jan'16, } \\ & \text { Dec } \\ & \text { '17 } \\ & \hline \end{aligned}$
1	Derive an expression for fundamental frequency of transverse vibration of a stretched string.	6	$\begin{aligned} & \text { Dec } \\ & \text { '16KTU } \end{aligned}$
MODULE 2 WAVE OPTICS			
1	What are coherent sources?	2	$\begin{aligned} & \text { May'1 } \\ & 9 \text { KTU } \end{aligned}$
2	What is grating element? Write the grating equation in terms of grating element.	2	$\begin{aligned} & \text { May'1 } \\ & 9 \text { KTU } \end{aligned}$
3	How an interference filter is constructed?	4	$\begin{aligned} & \text { May'1 } \\ & 9 \text { KTU } \end{aligned}$
4	In fraunhofer's diffraction due to a single slit a screen is placed 2 m away from the lens to obtain a pattern. If the slit width is 0.2 mm and the first minima lies 5 mm on either side of central maxima, find the wavelength of light.	4	$\begin{aligned} & \text { May'1 } \\ & 9 \text { KTU } \end{aligned}$
5	Explain the formation of interference fringes using air wedge. How is it used to determine the thickness of a thin wire?	6	$\begin{aligned} & \text { May'1 } \\ & 9 \text { KTU } \\ & \hline \end{aligned}$
6	Two independent sources of light cannot produce interference fringes. why	2	$\begin{aligned} & \hline \text { Jan, } \\ & \text { '16 } \\ & \text { KTU } \\ & \hline \end{aligned}$
7	Write the expression for the radius of the nth dark ring in Newton's rings interference pattern. What happens to this radius when air is replaced by a liquid of refractive index	$\begin{aligned} & 4, \\ & 2 \end{aligned}$	July '16 KTU, Sep 2020
8	In a Newton's ring arrangement, if a drop of water ($\boldsymbol{\mu}=\mathbf{4 / 3}$) is placed in between lens and plate, the diameter of the 10 ${ }^{\text {th }}$ dark ring is found to be $\mathbf{0 . 6 \mathbf { c m }}$. Obtain the radius of curvature of the face of the lens in contact with the plate. The wavelength of the plate is 6000Å	4	$\begin{array}{\|l\|} \hline \text { Dec } \\ \text { '18 } \\ \text { KTU } \end{array}$
9	With necessary theory write the formation of interference pattern in an air wedge and derive an expression for the bandwidth	6	$\begin{array}{\|l\|} \hline \text { July } \\ \text { '16 } \\ \text { KTU } \end{array}$
1	Show that the radi of different dark rings in Newton's Rings are proportional to square root of integers. Explain with necessary theory, how the refractive index of the given liquid is determined using Newton's rings arrangement.	6	$\begin{aligned} & \text { April } \\ & \text { '18KTU } \end{aligned}$

1	Write Rayleigh's criteria for resolution. State Rayleigh's criteria for geometrical and spectral resolution	6	$\begin{aligned} & \hline \text { Jan } \\ & \text { ' } 16 \mathrm{KTU} \end{aligned}$
$\underline{2}$	Define resolving power of a grating	2	$\begin{array}{\|l} \hline \text { July'16 } \\ \text { KTU } \end{array}$
1	Distinguish between Fresnel's and Fraunhofer Diffraction	2	May '17KTU
1	What is plane transmission grating? Describe how is it used to determine the wavelength of light	6	$\begin{array}{\|l\|} \hline \mathrm{Dec} \\ \text { ' } 17 \mathrm{KTU} \\ \hline \end{array}$
$\begin{aligned} & \mathbf{1} \\ & 5 \end{aligned}$	With the help of a neat diagram, explain the formation of diffraction pattern with a single slit .Deduce the equation for the bright and dark fringes and the width of central maxima.	6	May '17KTU
MODULE 3 QUANTUM MECHANICS \& NANOTECHNOLOGY			
1	What is tunnel effect?	2	$\begin{aligned} & \hline \text { May'1 } \\ & 9 \text { KTU } \\ & \hline \end{aligned}$
2	Estimate the de Broglie wavelength of an electron moving with a kinetic energy of 100 eV .	4	$\begin{aligned} & \text { May'1 } \\ & 9 \text { KTU } \end{aligned}$
3	What is Fermi level? Give its physical significance.	4	$\begin{aligned} & \text { May'1 } \\ & 9 \text { KTU } \end{aligned}$
4	Write the Schrodinger equation for a particle trapped in a one dimensional box of width L and solve it to obtain the energy eigen values.	6	$\begin{aligned} & \text { May'1 } \\ & 9 \text { KTU } \\ & \hline \end{aligned}$
5	Write the normalization condition of a wave function and its significance	2	$\begin{aligned} & \text { Aug } \\ & \text { '16 } \\ & \text { KTU } \end{aligned}$
6	Calculate the de Broglie wavelength of electron whose Kinetic energy is 10keV	4	$\begin{aligned} & \text { Jan '16 } \\ & \text { KTU } \end{aligned}$
7	State Uncertainty principle. With help of it, explain the absence of electrons inside the nucleus.	4	$\begin{array}{\|l} \hline \text { July } \\ \text { '16 } \\ \text { KTU } \end{array}$
8	Solve Schrodinger's equation for a particle in a one dimensional box and obtain the following (i) energy values (ii) normalized wave function.	6	July '17KTU
9	Explain the Quantum Mechanical Tunneling	4	$\begin{array}{\|l\|l\|} \hline \text { July } \\ \text { '16 } \\ \text { KTU } \\ \hline \end{array}$
0	Obtain energy and momentum operators	4	$\begin{array}{\|l\|} \hline \text { Dec } \\ \text { '18KTU } \end{array}$
1	What do you mean by Fermi energy level and Fermi energy?	2	$\begin{aligned} & \text { May'1 } \\ & \text { 6KTU } \end{aligned}$
2	Derive Schrodinger's time independent equation from time dependent one	6	$\begin{aligned} & \hline \mathrm{Dec} \\ & \text { '17KTU } \\ & \hline \end{aligned}$
MODULE 4 ACCOUSTICS \& NANOTECHNOLOGY			

1	What is the difference between echo and reverberation?	2	May'19 KTU
2	What is magnetostriction effect? Write one application.	2	May'19 KTU
3	A hall has dimensions of $25 \mathrm{~m} \times 20 \mathrm{~m} \times 8 \mathrm{~m}$. The reverberation time is 4 s . Determine the average absorption coefficient of the surfaces.	4	$\begin{aligned} & \text { May'19 } \\ & \text { KTU } \end{aligned}$
4	Calculate the capacitance required to produce ultrasonic waves of frequency 1 MHz with an inductance of 1 H .	4	$\begin{aligned} & \text { May'19 } \\ & \text { KTU } \end{aligned}$
5	What is inverse piezoelectric effect? With the help of a circuit diagram explain the production of ultrasonic waves using a piezoelectric oscillator.	6	$\begin{aligned} & \text { May'19 } \\ & \text { KTU } \end{aligned}$
6	Define absorption co-efficient of sound	2	$\begin{array}{\|l} \hline \text { July '16 } \\ \text { Dec '18 } \\ \text { KTU } \\ \hline \end{array}$
7	The volume of a hall is $\mathbf{3 0 0 0} \mathbf{m}^{\mathbf{3}}$. It has a total absorption of $\mathbf{1 0 0} \mathbf{m}^{\mathbf{2}}$ Sabine. If the hall is filled with audience who add another $\mathbf{8 0} \mathbf{m}^{\mathbf{2}}$ Sabine. Find the difference in reverberation time.	4	$\begin{aligned} & \text { Dec '18 } \\ & \text { KTU } \end{aligned}$
8	What is reverberation and reverberation time? What is its significance? 6 Write the factors on which the reverberation time depends. Write Sabine's formula.	$\begin{aligned} & 6 . \\ & 4 \end{aligned}$	$\begin{aligned} & \text { July '16 } \\ & \text { KTU, } \\ & \text { Sep } \\ & 2020 \end{aligned}$
9	What is piezo electric effect? With a neat circuit diagram explain the working of a Piezoelectric oscillator to produce ultrasonic waves	6	$\begin{array}{\|l\|} \hline \text { Jan '16 } \\ \text { KTU, } \\ \text { Sep } \\ 2020 \\ \hline \end{array}$
$\begin{aligned} & 1 \\ & 0 \end{aligned}$	What are the factors affecting acoustics of a building? Give remedies	6	Jan '16 Vuly'17 KTU
1	Define intensity of sound wave. Write the expression for the SIL in dB scale. Distinguish between threshold minimum intensity and threshold pain intensity	6	May'19 May'16 KTU
1	What are NDT and SONAR? How ultrasonic waves is used in it?	6	$\begin{array}{\|l} \hline \text { Dec '16 } \\ \text { KTU } \\ \hline \end{array}$
$\begin{aligned} & \\ & \hline 1 \\ & 3 \end{aligned}$	What is Magnetostriction effect? What are ultrasonic waves? Write the principal of production of ultrasonic waves by Magnetostriction effect. Draw the circuit diagram of the Magnetostriction oscillator. Write any two application of ultrasonic waves	4	$\begin{aligned} & \text { May'16 } \\ & \text { KTU } \end{aligned}$
$\begin{aligned} & 1 \\ & 4 \end{aligned}$	Name and explain two methods for the detection of ultrasonic waves. Name any four medical applications of ultrasonic waves	6	July '16KTU Sep 2020
1	Calculate the frequency of ultrasonic waves that can be generated by a nickel rod of length 4 cm . (Young's modulus of nickel $=207 \mathrm{GPa}$ and density of nickel $8900 \mathrm{~kg} / \mathrm{m} 3$).	4	$\begin{array}{\|l\|} \hline \text { July } \\ \text { '16KTU } \end{array}$

	MODULE 5 LASER \& FIBRE OPTICS		
1	What are the advantages of semiconductor laser?	2	$\begin{aligned} & \text { May'19 } \\ & \text { KTU } \end{aligned}$
2	What is photovoltaic effect?	2	May'19 KTU
3	Compare photographs and holograms.	4	May'19 KTU
4	With a block diagram, explain the working of an optical communication system.	4	May'19 KTU
5	Explain construction and working of Ruby laser.	6	May'19 KTU
6	Explain the principle of OFC. Distinguish between step index and graded index fibers. Give any two advantages of optical fibres.	6	May'19 KTU
7	What is population inversion? How can be achieved? Hint: Explanation of optical pumping using Xenon flash lamp in Ruby laser	2	Aug '16 KTU Sep 2020
8	What is the difference between spontaneous emission and stimulated emission?	2	$\begin{array}{\|l} \hline \text { Jan '16 } \\ \text { Dec '18 } \\ \text { KTU } \\ \hline \end{array}$
9	What is a laser? What are the three requisites for laser action to take place? Hint: Laser expansion or explanation. Name three requisites-metastable state , population inversion, stimulated emission, optical amplification Or three components-pumping system, lasing medium, optical resonator	2	$\begin{aligned} & \text { Jan'17 } \\ & \text { KTU } \end{aligned}$
$\begin{aligned} & 1 \\ & 0 \end{aligned}$	What is holograpy? How is it different from that of photography? Draw the diagrams illustrating the recording and reconstruction of a hologram.	6	$\begin{aligned} & \text { Jan '17 } \\ & \text { KTU } \end{aligned}$
1	Outline the principle and working of Ruby laser	6	$\begin{aligned} & \text { Jan '16 } \\ & \text { KTU } \end{aligned}$
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	With a neat figure and energy level diagrams, explain the construction and working of He-Ne laser	6	Dec '18 KTU
1	What is an LED? Give its working principle. Hint: Fig, Explanation, Working with the concept of direct bang gap semiconductor.	2	```Jan '16 Dec'18 KTU Sep 2020```

$\begin{aligned} & 1 \\ & 4 \end{aligned}$	Name the principle behind the propagation of light through an optic fibre. How the essential conditions for this phenomenon is satisfied in optic fibres. List three advantages of fibre optic communication.	4	Aug '16 KTU Sep 2020
1	What are fibre optic sensors? Name two different types.	2	$\begin{aligned} & \text { July '16 } \\ & \text { KTU } \end{aligned}$
1	Define numerical aperture of an optical fibre and derive an expression for NA of a step index fibre. Any four applications of optical fibre	6	$\begin{aligned} & \text { Jan '16 } \\ & \text { Dec '18 } \\ & \text { KTU } \\ & \text { Sep } \\ & 2020 \end{aligned}$

EST100-ENGINEERING MECHANICS

MODULE 1

1	Explain the laws of mechanics	3 marks	KTU 2017
2	State and prove Varignon's theorem of moments.	3 marks	KTU 2018
3	Calculate the amount of work done when the point of application is shifted from the point P, 2i- 6j- 3k to the point Q, 4i+3j-k by the application of a force F = 5i +2j +7k. (5) 3 With the help of sketches, explain how forces involved in the lifting of a load by a wedge are analysed	14 marks	KTU 2018
4	Explain the concept of free body diagram with figures 3 marks	KTU 2018	
5	State Pappus Guldinus theorem.	3 marks	
6	Determine the volume of a body generated by rotation of a semi- circular area about a non- intersecting axis using this theorem	14 marks	14 marks
7	The greatest and least resultants of two forces F1 and F2 are 17N and 3N respectively. Determine the angle between them when their resultant is 149 N?	2018	
8	ABCD is a square, each side being 20cm and E is the middle point of AB. Forces of magnitude 7,8,12,5,9 and 6 kN act on lines of directions AB, EC, BC, BD, CA and DE respectively. Find the magnitude and direction of resultant force.	KTU	
9	State and explain the principle of transmissibility of forces with figure?	14 marks	KTU 2018
10	3 cylinders of weight 300N (A), 200N (for B and C)are placed on a rectangular channel as shown in fig. Determine the reactions at 1, 2 and 4?	14 marks	KTU 2018

MODULE 2

1	Define angle of friction and angle of repose. Establish the relationship between angle of friction and coefficient of friction?	3 marks	$\begin{aligned} & \hline \text { KTU } \\ & \text { DEC } \\ & 2018 \end{aligned}$
2	Distinguish between (i) Static and kinetic frictions,(ii) Sliding friction and rolling friction	3 marks	$\begin{aligned} & \hline \text { KTU } \\ & \text { DEC } \\ & 2018 \end{aligned}$
3	Distinguish static and dynamic friction	3 marks	$\begin{aligned} & \text { KTU } \\ & \text { DEC } \\ & 2018 \end{aligned}$
4	A simply supported beam AB of span 5 m is carrying point loads $5 \mathrm{kN}, 3 \mathrm{kN}$ and 2 kN at $1 \mathrm{~m}, 3 \mathrm{~m}$ and 4 m respectively from support A . Calculate the support reaction at B.	3 marks	$\begin{aligned} & \hline \text { KTU } \\ & \text { DEC } \\ & 2018 \end{aligned}$
5	A lift has an upward acceleration of $1.2 \mathrm{~m} / \mathrm{s} 2$. What force will a man weighing 750 N exert on the floor of the lift? What force would he exert if the lift had an acceleration of $1.2 \mathrm{~m} / \mathrm{s} 2$ downwards?	14 marks	$\begin{aligned} & \text { KTU MAY } \\ & 2018 \end{aligned}$
6	write short notes on		
	Types of beams		
	Types of loads		
	Types of supports	14 marks	$\begin{aligned} & \hline \text { KTU } \\ & 2018 \end{aligned}$
7		14 marks	$\begin{aligned} & \hline \text { KTU } \\ & 2018 \end{aligned}$
	Determine the load P and support reactions?		
8	Determine the support reactions at A and B?	14 marks	$\begin{aligned} & \hline \text { KTU } \\ & 2018 \end{aligned}$

9	Determine the support reactions?	14 marks	$\begin{aligned} & \text { KTU } \\ & 2018 \end{aligned}$
10	A ladder 5 m long and weighing 260 N is placed against a vertical wall at an inclination of 30° with wall. A man weighing 780 N climbs the ladder. When he is at a distance of 1.64 m along the ladder from lower end, the ladder slips, What is the coefficient of friction assuming it to be same for all contact surfaces?	$14 \text { marks) }$	$\begin{aligned} & \hline \text { KTU DEC } \\ & 2017 \end{aligned}$

MODULE 3

1	State and prove pappus guldinus theorem?	3 marks	KTU 2018
2	Write a note on moment of inertia	3 marks	KTU 2018
3	Write a note on parallel axis theorom	3 marks	KTU 2018
4	Write a note on perpendicular axis theorem	3 marks	KTU 2018
5	Calculate the centroid of given areas?	14 marks	KTU 2018

	All dimensions in mm		$\text { KTU } 2018$
6	Determine the moment of inertia of given section	14 marks	KTU 2018
7	A solid cylinder 30 mm diameter and weighing 30 N is placed in a triangular channel, as shown in fig. Neglecting friction between the contact surfaces, calculate the normal reactions on the sides of the		

	channel		
8	Explain principal moment of inertia, principal axis?	3 marks	KTU 2018
9	State and prove parallel axis theorem?	3 marks	KTU 2018
10	For the system of forces, determine the magnitude,direction and position of the resultant force about A.		KTU 2019
		14 marks	KTU 2019
11	a) Define principal axes and principal moment of inertia. b) Determine the centroid of the shaded area. Also find moment of inertia of the shaded area about an horizontal axis passing through the centroid.	14 marks	KTU 2019
		14 marks	KTU 2019
12	Determine the product of inertia about OX and OY of the trapezium.	14 marks	KTU 2019

MODULE 4

1. Highlight the principles of mechanics applied in the evaluation of elastic collusion of rigid bodies.

$$
3 \text { marks }
$$

2. Explain D'Alembert's principle 3 marks
3. Briefly explain equations of kinematics 3 marks
4. An effort of 200 N is required just to move a certain body up an inclined plane of angle 15 , the force acting parallel to the plane. If the angle of inclination of the plane is made 20° the effort required, again parallel to the plane is found to be 230 N . Find the weight of the body and the coefficient of friction.
(14 marks)
KTU MAY 2017
5. Explain with sketches how the forces involved in the lifting of a load by a wedge are analysed.

KTU DEC 2
6. State D'Alemberts principle giving equations expressing the above Principle on the motion of a lift moving upwards with an acceleration ' a ' $\mathrm{m} / \mathrm{sec}^{2}$ carrying a weight of ' W ' N (3 marks)
7. Find the reactions at the supports A(hinged) and B (roller).

14 marks KTU
Dec 2018

MODULE 5

1. What do you mean by instantaneous centre of rotation? How can it be located for a body moving with combined motion of rotation and translation? (3 marks) KTU MAY 2018
2. Compare damped and undamped free vibrations. 3 marks
3. State the equation of motion of a rotating rigid body, rotating about its fixed axis 3 marks
4. Illustrate the significance of instantaneous centre in the analysis of rigid body undergoing rotational motion. 3 marks KTU MAY 2018
5. An elevator weigh 500 N is ascending with an acceleration of $3 \mathrm{~m} / \mathrm{s} 2$.During this ascend its operator whose weight is 700 N is standing on the floor. What will be the reaction produced by the floor on the operator, what will be the total tension in the cable on the elevator

$$
\text { (14 marks) KTU DEC } 2017
$$

6. Define simple harmonic motion? Derive an expression for the acceleration of particle executing simple harmonic motion. 14 marks KTU MAY 2018
7. Distinguish between SHM and periodic motion?
(3 marks) KTU DEC 2018
8. Explain the types of vibrations
(3 marks) KTU DEC 2018
9. Discuss - (a) amplitude (b) frequency (c) time period
(3 marks) KTU MAY 2018
10. A body performing simple harmonic motion completes 8 oscillations in one minute. The velocity of the body is half the maximum velocity at a distance of 12 cm from the centre. Determine the amplitude and maximum acceleration. (14 marks) KTU MAY 2017
11. A particle has simple harmonic motion. Its maximum velocity was $6 \mathrm{~m} / \mathrm{s}$ and the maximum acceleration was found to be $12 \mathrm{~m} / \mathrm{s}^{2}$. Determine the angular velocity and amplitude. Also determine its velocity and acceleration when displacement is half of the amplitude.
12. The strength of a spring is such that a load of 50 N is required to elongate it by 10 mm . When a certain load W is suspended from one end and caused to perform SHM, the complete oscillations per minute is 100 . Calculate the stiffness of the spring and the value of load W
(14 marks)
KTU MAY 2017
13. A clock provided with a seconds pendulum is gaining 160 seconds a day. Find by how much the length of the pendulum should be increased so as to correct the clock. If it is running at correct time at a place where acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s} 2$, find by how much the clock will lose or gain if it is taken to a place where the acceleration due to gravity is $9.79 \mathrm{~m} / \mathrm{s} 2$.

14 marks KTU MAY 2019

BASICS OF ELECTRICAL ENGINEERING (EST130 PART-1)

MODULE-I

1 State and explain Kirchhoff's laws with examples
2 Calculate the current in each branch of the following circuit using mesh analysis?

KTU-DEC
2019

KTU-MAY
2016

4
KTU-MAY

5 A resistor of 5Ω is connected in parallel with a resistor of R1 Ω. This combination is connected in series with an unknown resistor of R 2Ω and the complete circuit is then connected to 50 V dc supply. Calculate the values of R1 and R2, if the power dissipated by the unknown resistor R 1 is 150 W with 5A passing through it.

6 Find mesh currents in the figure shown by mesh analysis

10
KTU-DEC-
2018

8 By applying Kirchhoff's laws calculate current flowing through the 6Ω resistor in the network shown

$10 \begin{gathered}\text { KTU-DEC- } \\ 2016\end{gathered}$

9 From the figure use node voltage analysis to find voltage V_{A}

10 A network with three meshes are shown. Apply mesh current method to determine the value of unknown voltage V, for which mesh current $I_{1}=0$.

MODULE-II

1 Define the terms i) mmf ii) magnetic field strength iii) magnetic flux and iv) magnetic flux density.

2
State and explain i) Faraday's laws and ii) Lenz's law.
iii) Find the instantaneous value of current 0.125 s after passing through a positive maximum value
iv) At what time, measured from a positive maximum value, will the instantaneous current be 14.14 A ?

4 Determine the average and rms values of the triangular voltage wave having maximum value Em volt as shown in figure.

5 Compare electric and magnetic circuits

KTU-MAY
2016

KTU-DEC

KTU-DEC
2018

6 Calculate the flux produced in the air gap in the magnetic circuit shown infigure which is excited by the MMF of two windings. The mean length of theflux path is 40 cm . The permeability of iron is 2000 . The uniform cross sectional area is $10 \mathrm{~cm}^{2}$

7 Draw the circuit of a series parallel magnetic circuit. Show its electrical equivalent
8 A ring shaped electromagnet has an air gap of 6 mm and cross sectional area of $12 \mathrm{~cm}^{2}$. The mean length of the core (excluding air gap) is 60 cm . Calculate the mmf required to produce a flux density of $0.4 \mathrm{~Wb} / \mathrm{m}^{2}$ in the gap. Take the relative permeability of the material as 400 .

9 A steel ring of 25 cm diameter and of circular section 3 cm in diameter has an air gap of 1.5 mm length. It is uniformly wound with 1000 turns of wire carrying a current of 2 A .

Calculate
i) magnetomotive force
ii) magnetic flux density in air gap
iii) magneticflux
iv) relative permeability of steel ring. Assume that iron path takes about 40% of the total mmf.

10 Determine the RMS, Average and Form Factor of the waveform shown below

MODULE-III

1 Explain the advantage of three phase system of power supply compared to single phase system of power supply
2 When an alternating voltage of $(80+\mathrm{j} 60) \mathrm{V}$ is applied to a circuit, the resulting current flow is $(-4+j 10)$ A. Find the impedance, power consumed and the phase angle of the circuit.
3 Two impedances Z1 and Z2 when connected separately across a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, consume 300 W and 150 W at a power factor of 0.4 lagging and 0.7 leading respectively. When the two impedances are connected in series across the same supply, find total power consumed and overall power factor.
4 A balanced three phase load has per phase impedance of $(30+\mathrm{j} 50) \Omega$. If the load is connected across $400 \mathrm{~V}, 3$ phase supply, find (i) phase current (ii) line current and

KTU-DEC 2019
KTU-DEC 2019

KTU-DEC 2019

KTU-DEC 2019

5 In a single phase ac circuit consisting of an impedance of 10Ω, the RMS value of applied voltage is 230 V .
i. Write down the expression for instantaneous voltage
ii. If the current lags the applied voltage by 30° write down the expression for instantaneous current
iii. Calculate the power consumed in the circuit

6 A balanced three phase load consists of three coils each having resistance of 4Ω and inductance 0.02 H . It is connected to a $415 \mathrm{~V}, 50 \mathrm{~Hz}, 3$-phase ac supply. Determine the phase voltage, phase current, power factor and active power when the loads areconnected in (i) star (ii) delta
7 A coil of resistance 10Ω and inductance 0.1 H is connected in series with a $150 \mu \mathrm{~F}$ capacitor across $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) Inductive reactance, Capacitance reactance, impedance, current and power factor. (ii) The voltage across the coil and capacitor respectively.

8 i) An alternating voltage of $(80+j 60) \mathrm{V}$ is applied to a circuit and the current flowing is (-4 + j10) A. Find
(i) the impedance of the circuit, (b) the power consumed and (c) the phase angle.
ii) Each phase of a delta connected load has a resistance of 25Ω and an inductanceof0.15

H . The load is connected across a $400 \mathrm{~V}, 50 \mathrm{~Hz}$, three phase supply. Determine the line current, power factor and power consumed.

9 Two impedences, $10 \mid _-30$ and $20 \mid _60$ are connected in parallel. Evaluate the equivalent impedance. What is the nature (capacitive or inductive) of the equivalent impedence? If a current of $10 \mid _45$ is passing through the parallel combination, calculate the voltage across the combination and express it in rectangular form. Evaluate the currents in each of the impedences. Draw the phasor diagram showing this voltage and all three currents i) Define peak factor and form factor. Consider $v(t)=500 \cos (100 t)$, a sinusoidal voltage. Evaluate the rms value and peak factor of the voltage form.

10 An alternating voltage is defined as $\mathrm{v}=100 \sin \alpha 0<\alpha<\pi \mathrm{v}=0 \mathrm{~V} \pi<\alpha<2 \pi$ What is the RMS value of this voltage

KTU-MAY
2019

KTU-MAY
2019

KTU-DEC
2017

KTU-DEC
2017

KTU-DEC
2016

KTU-DEC
2017

BASICS OF ELECTRONICS ENGINEERING (EST 130 PART-2) QUESTION BANK			
Qn. No	MODULE - 4	Marks	Year
1.	What are the different types of capacitors? Give any two applications of capacitors.	4	$\begin{gathered} \text { KTU- } \\ \text { DEC } \\ 2019 \end{gathered}$
2.	Describe the forward characteristics of a diode?	4	$\begin{gathered} \text { KTU- } \\ \text { DEC } \\ 2019 \\ \hline \end{gathered}$
3.	Explain the working of an NPN transistor. Describe with suitable sketches the input-output characteristics of an NPN transistor.	10	$\begin{gathered} \text { KTU- } \\ \text { DEC } \\ 2019 \\ \hline \end{gathered}$
4.	a) Explain the formation of a potential barrier in a P-N junction diode. b) What do you understand by Avalanche breakdown? Draw and explain the reverse V-I characteristics of a diode.	4 6	KTUDEC 2019
5.	What are passive components? Mention at least three components with symbol.	4	$\begin{gathered} \text { KTU- } \\ \text { DEC } \\ 2019 \\ \hline \end{gathered}$
6.	Explain the different types of variable resistors? Mention their applications.	5	$\begin{gathered} \text { KTU- } \\ \text { DEC } \\ 2018 \\ \hline \end{gathered}$
7.	Write down the color code for a given resistor of 47-Kilo-ohms with a tolerance of 10%.	4	$\begin{gathered} \text { KTU- } \\ \text { DEC } \\ 2018 \\ \hline \end{gathered}$
8.	Write the significance of specifying tolerance value of a component. A ceramic capacitor has got the following code marked on its surface. Identify the capacitance value. (i) 103 J (ii) 2 n 2	5	KTUDEC 2017
9.	Give the specifications of a resistor. The color bands marked on a resistor are Blue, Grey, Yellow and Gold. What are the minimum and maximum resistance values expected from that resistance?	4	Model question 2019
10.	What is meant by avalanche breakdown?	4	Model question 2019

Qn. No	MODULE-5	Marks	Year
1.	Draw the block diagram of a public address system and write the role of each block.	4	$\begin{gathered} \text { KTU- } \\ \text { DEC } \\ 2019 \\ \hline \end{gathered}$
2.	Explain the working of a bridge rectifier	4	KTUDEC 2019
3.	a) What is the need of biasing? Draw the potential divider biasing circuit? b) Explain the working of a simple Zener voltage regulator	4 6	KTUDEC 2019
4.	a) Draw the circuit diagram of an RC coupled amplifier and explain its frequency response. b) Narrate how capacitor filter eliminate ripples from the output of a rectifier.	4 6	KTUDEC 2019
5.	Explain the working of Zener voltage regulator with a neat diagram.	5	KTUDEC 2018
6.	With necessary diagrams, explain the working of a full wave bridge rectifier.	5	KTUDEC 2018
7.	Draw the block diagram of a DC power supply and mention the functions of each block.	5	$\begin{gathered} \text { KTU- } \\ \text { DEC } \\ 2017 \\ \hline \end{gathered}$
8.	Discuss the role of coupling and bypass capacitors in a single stage RC coupled amplifier.	4	Model question 2019
9.	a) With a neat circuit diagram, explain the working of an RC coupled amplifier. b) Draw the frequency response characteristics of an RC coupled amplifier and state the reasons for the reduction of gain at lower and higher frequencies.	6	Model question 2019
10.	a) With the help of block diagram, explain how an electronic instrumentation system. b) Explain the principle of an antenna.	6 4	Model question 2019

Qn. No	MODULE - 6	Marks	Year
1.	Explain the concept of cells in cellular communication	4	KTU- DEC 2019
2.	a)What are the merits of AM compared to FM. The carrier amplitude of a given AM wave is 5V and the message signal amplitude is 3V. Find the modulation index. b) Explain the block diagram of super heterodyne receiver.	5	KTU- DEC 2019
3.	a) Describe the principle of an antenna.	5	3

LIFE SKILLS (HUT 101)

MODULE 1

Sl. No	Questions	Marks	KTU (Month/Year)
1	What do you mean by communication? What are the different types of Barriers to communication?	6	DEC,2016
2	Briefly mention different Levels of communication?	5	January,2017
3	Explain the Flow of communication and represent it diagrammatically?	5	KTU,july,2017
4	What are the different types of Communication Networks?	6	KTU,Dec,2019
5	Differences between Group Discussion \& Debate	5	KTU,Apr,2019
6	Compose an e-mail to your friend	6	KTU,May,2018
7	Prepare your Resume	6	KTU,May,2018
8	Letter Writing- Formal \& Informal	6	KTU,May,2016
9	Differences between Literary writing \& Technical writing	5	KTU,DEC,2016
10	Methods to ensure success in GD	5	KTU,DEC 2018
11	Types of Report	4	KTU,Apr,2019
12	Multiple Intelligence	2	KTU,Apr,2019

MODULE 2

5

1 Different types of Thinking Hats
2 Differences between Lateral Thinking \& Vertical Thinking
3 Differences between Creative Thinking \& Critical Thinking
4 Differences between Creativity \& Innovation

KTU,DEC2019
KTU,DEC,2019
KTU,Apr 2019
KTU,May 2016
KTU, Jan 2017

Interpreting body language cues

MODULE 3

MODULE 4

What do you mean by Moral Realism?

What is Moral Absolutism?
3

What is the importance of Professional Ehics?

KTU,july 2017
KTU, April 2019
KTU, July 2017
KTU, July 2017
KTU, Dec,2016

KTU, May 2018
KTU, July 2017
KTU, May
2018
KTU, Jan 2017
KTU, April 2019
KTU May,2018
KTU,Dec,2016
KTU, Jan 2017
KTU, Dec 2016
KTU,
May 2018

KTU April
2019

KTU,
May,2016
KTU, Dec 2019
KTU, Jan 2017
KTU, Dec 2019
KTU, Dec 2019
KTU, Dec 2018 Engineering?

What is computer code of ethics
Mention IEEE and ME code of ethics
What do you mean by Empathy, Integrity \& sharing?
Case Study

MODULE 5

What do you mean by Leadership \& what are its different traits?
Explain VUCA Leadership
What are the different Levels of Leaderships?
Explain the term making of a leader
Differences between Transactional leader \& Transformational 5 leader?

What are the different types of Leadership?
Differences between Manager \& Leader
Differences between Coaching \& Teaching
What do you mean by DART Leadership?
What are the different levels of Leadership?
Leadership Grid
VUCA Leadership

KTU, DEC2016
KTU,May 2016
KTU, Dec 2018
KTU(All Sem)

KTU July 2017
KTU Apr,2019
KTU Dec 2019
KTU Dec 2018
KTU May 2018

KTU May,2018
KTU May,2016
KTU Dec 2016
KTU May 2016
KTU Dec 2018
KTU Apr 2019
KTU, Dec 2019

