Course	code	Course Name L-T-P	Credit	s Year o Introduc	of ction
IE3	06	SUPPLY CHAIN AND LOGISTICS MANAGEMENT3-0-0	3	2016	
Prerequi	site: N	NI			
Course (Object Fo develains. Fo develapply Fo implechniq	tives relop knowledge on structures, decision phases, measure relop understanding on the strategic, tactical and operation chains. Part knowledge on logistics management and related uses.	es and too fonal decis advanced	ls of supply sion tools of tools and	
Syllal General network cycle ar Routing,	bus featur desig nd saf , scheo	res of supply chains, planning demand and supply, for n, locations, layouts etc. Supply chain inventory plann fety inventory systems: Logistics management: design duling and sequencing. Advanced logistics decision mode	ecasting, a ning decis of trans ls.	aggregate plan ions, multi-ect portation netw	nning, helon work.
Exped The i. U ii. U iii. U	cted O studer Jnders Jnders Jnders	Putcome Its will tand the structures, decision phases, measures and tools of tand the strategic, tactical and operational decision tools of tand knowledge on logistics management and related adva	supply ch f supply cl nced tools	ains. ains. and technique	es.
Text I 1. (2. S F	Books G. Sree Sunil C Pearson	enivasan, Quantitative Models in Operations and Supply Cl Chopra, Peter Meindl, Supply Chain Management – Strateg n Education.	hain Mana gy, Plannin	gement, PHI 1g and Operati	ion,
 References David Simchi – Levi & Philip Kaminsk, Designing and Managing the Supply Chain, McGraw-Hill Companies Inc. David Taylor and David Brunt, Manufacturing Operations and Supply Chain Management, Vikas Thomson Learning, 2001. Donald J. Bowersox & David J. Closs, Logistical Management, TMH. Jeremy F. Shapiro, Modeling and Supply Chain,. Thomson Learning, 2001. Martin Christopher, Logistics and supply chain management, Financial times management. 					
COURSE PLAN					
Module		Contents	Нот	irs End-S Exam. N	em. Marks
I	Gene Struc Metr	eral Features of Supply Chains: Supply Chainstain stures, Decision Phases, Performance Drivers and Measu ics. Achieving Strategic Fit and its Obstacles.	s – ires,	15%	

II	Planning Demand & Supply: Planning demand and supply in supply chains – Forecasting techniques for supply chains, Seasonal Forecasting Models, Measure of Forecast errors.	7	15%
	FIRST INTERNAL EXAM		
ш	AggregatePlanning:AggregatePlanningStrategies,AggregatePlanningmodels - QuantitativeExamples.NetworkDesign, Locations and Layouts:Network design inUncertainEnvironment,FacilityLocation andLayoutdecisions.	47 A	15%
	Multi-echelonInventorySystems:InventoryPlanningDecisions-EstimateofCycleInventory,DiscountingModels,		
IV	Multi-item Inventory models, Determination of Safety Inventory, Impact of Supply Uncertainty, Multi- echelon Inventory models, Quantitative Examples. Bullwhip effect.	7	15%
	SECOND INTERNAL		
v	Logistics Management : 3PL, 4PL, Design Options for Transportation Network. Routing, Scheduling and Sequencing in Transportation, Vehicle Routing Problems. Quantitative Examples.	7	20%
VI	Reverse Logistics: Reverse logistics and Closed Loop Supply Chains. Advanced Logistics Decision Models: Bin Packing Problems, Fixed Charge Problems, Knapsack Problems, Multi- stage transportation problems.	7	20%
	END SEMESTER EXAM		

End Semester Examination Question Paper Pattern

Examination duration: 3 hours

Maximum Marks: 100

Part A (Modules I and II):

Candidates have to answer any 2 questions from a choice of 3 questions. Each full question carries a total of 15 marks and can have a maximum of 4 sub questions (a, b, c, d). No two questions shall be exclusively from a single module. All three questions shall preferably have components from both modules. Marks for each question/sub question shall be clearly specified. Total percentage of marks for the two modules put together as specified in the curriculum shall be adhered to for all combinations of any two questions.

Estd

Part B (Modules III and IV):

(Same as for part A marks)

Part C (Modules V and VI):

(Same as for part A, except that each full question carries 20 marks)

Note: If use of tables and charts are permitted for the university examination for this course, proper direction of the same should be provided on the facing sheet of the question paper.

Course cod	e Course Name	L-T-P- Credits	Year of Introduction
ME401	DESIGN OF MACHINE ELEMENTS - I	3-1-0-4	2016
Prerequisite:	ME201 Mechanics of Solids	+ + +	-
Course Obj	ectives:	AN	4
To revTo int	view concepts of statics and strength of materials. roduce fundamental approaches to failure prevention of con	nponents.	1
• To pro spring	wide knowledge in the design of common machine elements cotter joints and couplings.	ts such as faste	ners, shafts,
Syllabus		Y	
Introduction	to Design, Materials and their properties, Theories of	Failure, Shoo	ck and impact
loads,Thread	ed Joints, Bolted joints, Design of riveted joints, Cotter a	nd Knuckle jo	ints, Design of
welded joints	s, Helical springs, Leaf springs, Shafting, Design of Couplin	g.	
Expected ou	tcome:		
The students	will be able to	_	
i. Find	out various stresses induced in a machine element under dif	ferent type of l	loading
ii David	tions.		
II. Devis	se machine components for its conceptual design.		
Text Books :			
1. Ja	llaludeen, Machine Design, Anuradha Publications, Chenna	ai,2014	
2. R	. L. Norton, Machine Design – An Integrated Approach, Pe	arson Educatio	n, 2001
3. V	.B.Bhandari, Design of Machine elements, McGraw Hill, 2	010	
Data books	permitted for reference in the final examination:		
1. K	Mahadeyan, K.Balayeera Reddy, Design Data Hand Book	CBS Publishe	ers &
D	istributors, 2013		
2. N	arayanaIyengar B.R & Lingaiah K, Machine Design Data H	andbook, Tata	McGraw
Н	ill/Suma Publications, 1984		
3. PS	SG Design Data, DPV Printers, Coimbatore, 2012		
References B	ooks:		
1. J.]	E. Shigley, Mechanical Engineering Design, McGraw Hill,2	2003	
2. Ju	vinall R.C & Marshek K.M., Fundamentals of Machine Con	nponent Design	n, John
	lley,2003	E de set	2007
5. M. 4 Ra	r. spous, 1. E. Snoup, Design of Machine Elements, Pears iendra Karwa Machine Design Laxmi Publications 2006	on Education,	2000

	Course Plan			
Module	Contents	Hours	End Sem. Exam	
	ADI ADDITI KATA	N.A	Marks	
T	Introduction to Design- Definition, steps in design process, preferred numbers, standards and codes in design Materials and their properties- Elastic and plastic behaviour of metals	4	15%	
	ductile and brittle behaviour, shear, bending and torsional stresses, combined stresses, stress concentration factor.	5	1370	
п	Theories of Failure- Guest's Theory, Rankine's Theory, St. Venant's Theory, Haigh's Theory, and Von Mises and Hencky Theory.	5	15%	
11	Shock and impact loads, fatigue loading, endurance limit stress, factors affecting endurance limit, factor of safety	6	13 //	
	FIRST INTERNAL EXAM			
ш	Threaded Joints- Terminology, thread standards, types of threads, stresses in screw threads	3	150%	
111	Bolted joints- effect of initial tension, eccentric loading, design of bolts for static and fatigue loading, gasketed joints, power screws	4	13 %	
Т	Design of riveted joints- Material for rivets, modes of failure, efficiency of joint, design of boiler and tank joints, structural joints	4	\mathbf{T}	
IV	Cotter and Knuckle joints- Gib and Cotter Joint, analysis of knuckle joint.	4	15%	
	Design of welded joints- welding symbols, stresses in fillet and butt welds, Butt joint in tension, fillet weld in tension, fillet joint under torsion, fillet wed under bending, eccentrically loaded welds.	4		
	SECOND INTERNAL EXAM	1		
V	Springs- classification, spring materials, stresses and deflection of helical springs, axial loading, curvature effect, resilience, static and fatigue loading, surging, critical frequency, concentric springs, end construction.	5	20%	
	Leaf springs- Flat springs, semi elliptical laminated leaf springs, design of leaf springs, nipping	4		
VI	Shafting- material, design considerations, causes of failure in shafts, design based on strength, rigidity and critical speed, design for static and fatigue loads, repeated loading, reversed bending	5	20%	
	Design of Coupling- selection, classification, rigid and flexible coupling, design of keys and pins	3		
	END SEMESTER EXAM			

Time: 3 hrs

Use of approved data book permitted

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 3 questions from module I and II and at least 1 question from each module Each question carries 15 marks Students will have to answer any 2 questions out of 3 (2X15 marks =30 marks)

Part B

There should be 3 questions from module III and IV and at least 1 question from each module Each question carries 15 marks Students will have to answer any 2 questions out of 3 (2X15 marks =30 marks)

Part C

There should be 3 questions from module V and VI and at least 1 question from each module Each question carries 20 marks Students will have to answer any 2 questions out of 3 (2X20 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

2014

Course code	Course Name	L-T-P- Credits	Ye Intro	ar of duction
ME403	ADVANCED ENERGY ENGINEERING	3-0-0-3	20	16
ME403 Prerequis Course C 1. To g 2. To u 3. To l 4. To c Syllabus Global at conversior sources -g impact and Expected The stude i. ii.	ADVANCED ENERGY ENGINEERING ite: Nil Dijectives: give an idea about global energy scenario and conventional energy inderstand solar, wind and Biomass energy know concepts of other renewable energy sources create awareness on the impacts of energy conversion and important and Indian energy scenario, conventional energy sources, env a, renewable energy sources- solar, wind, biomass, brief accound geothermal, tidal, MHD, hydrogen, fuel cells, small scale hydro al Sustainability issues. I outcome: ents will be able to Understand energy scenario and the environmental effects of en- Become aware of different renewable energy sources and choor ks:	3-0-0-3 sources nee of sustain rironmental nt of other power plant nergy conve	20 nable energy	16 fgy f energy e energy onmental f for
1. Jeff 2. P K 3. Tiw Ltd.	ks: erson W Tester et.al., Sustainable Energy: Choosing Among Optio Nag, Power Plant Engineering, TMH, 2002 ari G N, Ghosal M K, Fundamentals of renewable energy sources, , 2007	ns, PHI, 200 Alpha Scier)6 nce Intern	ational
Reference 1. Dav Son 2. God 3. Rol futu 4. Tw	es Books: id Merick, Richard Marshall, Energy, Present and Future Options, s, 2001 Ifrey Boyle, Renewable Energy : Power for a Sustainable Future, C and Wengenmayr, Thomas Buhrke, 'Renewable Energy: Sustainal re, Wiley – VCH, 2012 ridell J W and Weir A D, Renewable Energy Resources, UK, E&F	Vol.I & II, . Oxford Unive ole energy co F.N. Spon Lt	John Wile ersity Pres oncepts fo d., 2006	ey & ss, 2012 or the
	Course Plan			
Module	Contents 2014		Hours	End Sem. Exam Marks
Ι	Introduction to the course. Global and Indian energy resource Demand and supply. Components, layout and working principles hydro, nuclear, gas turbine and diesel power plants	es. Energy s of steam,	7	15%
п	Solar Energy- passive and active solar thermal energy, solar solar thermal electric systems, solar photovoltaic systems. Eco solar power. Sustainability attributes.	collectors, nomics of	7	15%

III	Wind Energy-Principle of wind energy conversion system, wind data and energy estimation, wind turbines, aerodynamics of wind turbines, wind power economics. Introduction to solar-wind hybrid energy systems	7	15%	
IV	Biomass Energy – Biomass as a fuel, thermo-chemical, bio-chemical and agro-chemical conversion of biomass- pyrolysis, gasification, combustion and fermentation, transesterification, economics of biomass power generation, future prospects.		15%	
	SECOND INTERNAL EXAM			
v	Other Renewable Energy sources – Brief account of Geothermal, Tidal , Wave, MHD power generation, Small, mini and micro hydro power plants. Fuel cells – general description, types, applications. Hydrogen energy conversion systems, hybrid systems- Economics and technical feasibility		20%	
VI	Environmental impact of energy conversion – ozone layer depletion, global warming, greenhouse effect, loss of biodiversity, eutrophication, acid rain, air and water pollution, land degradation, thermal pollution, Sustainable energy, promising technologies, development pathways	7	20%	
END SEMESTER EXAM				

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Course	Course Name	Course NameL-T-P-Year ofCreditsIntroduction						
ME 40	5 REFRIGERATION AND AIR CONDITIONING	2-1-0-3	20)16				
Prerequis	ite: ME205 Thermodynamics							
Course (hiertives.	ATA	1					
1. To	b introduce vapour compression and vapour adsorption systemeters	ems	V1					
2. To	impart knowledge on refrigeration cycles and methods to	improve perfor	rmance					
3. To	o familiarize the components of refrigeration systems	A						
4. To	o introduce air conditioning systems	avetome						
5. 10	Know the applications of refigeration and an conditioning	systems						
Syllabus								
Introduc	tion, Thermodynamics of refrigeration, Air refriger	ation systems	, Vorte	x tube				
refrigera	tion, Adiabatic demagnetization of paramagnetic salts,	Vapour comp	ression s	ystems,				
Refriger	ants and their properties, Application of refrigeration, Re-	trigeration syst	em comp	oonents,				
Air cond	itioning, Psychrometry, Air conditioning systems.							
Expected	outcome:							
i ne stude	Understand the principles refrigeration of air-conditioning	and basic desig	n conside	erations				
ii.	Carry out analysis of refrigeration cycles		ii consiac	indions.				
iii.	Apply the concepts of indoor environmental comfort.							
iv.	Perform psychrometric calculations, humidity control	and analysis	of air-co	nditioning				
	processes							
v.	Know the various applications of Refrigeration and air con	ditioning						
Text Boo	ks [.]							
1. Are	ora C. P, Refrigeration and Air-Conditioning, McGraw-Hill,	, 2008						
2. Are	ora S. C. and Domkundwar, Refrigeration and Air-Condition	ning, Dhanpat	<mark>Rai,</mark> 2010)				
3. Ba	laney P. L, Refrigeration and Air-Conditioning, Khanna Pu	blishers, New I	Delhi, 20	14				
4. Ma	nohar Prasad, Refrigeration and Air-Conditioning, New Ag	e International,	2011					
Referenc	es Books:	J						
1. AS	HRAE Handbook							
2. Do	ssat. R. J, Principles of Refrigeration, Pearson Education In	dia, 2002	-	2000				
3. Sto	ecker W.F, Refrigeration and Air-Conditioning, McGraw-F	lill Publishing (Company	, 2009				
	Course Plan							
M. 1. 1.	2014	_	TT	Sem.				
Module	Contents		Hours	Exam Masilar				
	Introduction – Brief history and applications of	refrigeration.		Marks				
	Thermodynamics of refrigeration- reversed Carnot cycle	- heat pump						
т	and refrigeration machines, Limitations of reversed Carno	ot cycle. Unit	6	15%				
	of refrigeration- Air refrigeration systems- Reversed Jou	le cycle, Air		1.5 /0				
	craft refrigeration systems, simple bootstrap- Reger	ierative and						
	ולטעלכע מווטולות גיאולווו							

п	Vortex tube refrigeration-Very low temperature refrigeration systems (concept only). Adiabatic demagnetization of paramagnetic salts Vapour compression systems-simple cycle - representation on T- s and P- h Diagrams. COP- Effect of operating parameters on COP – methods of improving COP of simple cycle- super- heating , under	8	15%
	cooling, Liquid suction heat exchanger, actual cycle.	NA	
		1 V 1	
III	Multi pressure systems - multi compression and multi evaporator, systems. Inter cooling - flash inter cooling and flash gas removal- Different combinations of evaporator and compressor for different applications, Cascade system Refrigerants and their properties-Eco-friendly Refrigerants, mixed refrigerants, selection of refrigerants for different applications Vapour absorption systems - Ammonia – water system - simple system- drawbacks-Lithium Bromide water system- Electrolux- comparison with vapour compression system- steam jet refrigeration.	7	15%
IV	Application of refrigeration- domestic refrigerators- water coolers- ice plants. Cold storages- food preservation methods- plate freezing, quick-freezing. Refrigeration system components- Compressors, condensers, expansion devices, evaporators. Cooling towers- Different types and their application fields- Refrigerant leakage and detection – charging of refrigerant – system controls.	6	15%
	Air conditioning magning and utility comfort and industrial air		
V	conditioning – meaning and utility, conflict and industrial air conditioning. Psychometric properties- saturated and unsaturated air, dry, wet and dew point temperature – humidity, specific humidity, absolute humidity, relative humidity and degree of saturation- thermodynamic equations- enthalpy of moisture- adiabatic saturation process -psychrometers. Thermodynamic wet bulb temperature, psychometric chart- Psychometric processes- adiabatic mixing- sensible heating and cooling- humidifying and dehumidifying, air washer – bypass factor- sensible heat factor-RSHF and GSHF line- Design condition- Apparent dew point temperature – Choice of supply condition, state and mass rate of dehumidified air quantity – Fresh air supplied –air refrigeration. Comfort air conditioning- factors affecting human comfort. Effective temperature – comfort chart. Summer air conditioning- factors affecting-cooling load estimation.	8	20%
VI	Air conditioning systems- room air conditioner- split system- packaged system-all air system-chilled water system. Winter air conditioning – factors affecting heating system, humidifiers. Year round air conditioning AC system controls-thermostat and humidistat. Air distribution systems- duct system and design- Air conditioning of restaurants, hospitals, retail outlets, computer center, cinema theatre, and other place of amusement. Industrial applications of air conditioning.	7	20%

Time: 3 hrs

Use of approved Refrigerant tables permitted

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

2014

Course	code	Cou	rse Name	L-T-P-Credits	Yea	r of Intro	oduction
ME	407	MECH	ATRONICS	3-0-0-3		2016	
Prerequis	ite: Nil						
Course ()bjective	s:					
•	To intr	oduce the features	of various sensors used	in CNC machines	and rob	ots	
•	• To study the fabrication and functioning of MEMS pressure and inertial sensors						
•	To ena	ble development o	f hydraulic/pneumatic c	ircuit and PLC prog	grams f	or simple	¢
	applications						
Syllabus				Electric Markani	-1 C	()	
Introduc	tion to	Mechatronics, sen	sors, Actuators, Micro	Electro Mechanic	al Sys	stems (N botics El	IEMS),
drives F	once and	tactile sensors. Im	age processing technique	s Case studies of N	Mechati	ronics sv	stems
Exported			age processing teeninque			tomes sy	stems.
The stude	ents will b	be able to					
i.	Know	the mechanical sy	stems used in mechatron	nics			
ii.	Integra	te mechanical, ele	ctronics, control and con	nputer engineering	in the d	lesign of	
	mecha	tronics systems					
Text Boo	oks:						
I. Bolto	n W., M n Educat	echatronics: Election Limited New J	Control Systems 1	n Mechanical and	Electric	cal Engir	leering,
2 Rama	ir Euucai chandrar	K P G K V	Zijavaraghavan M S	Balasundaram M	echatro	nics: Int	eorated
Mech	anical El	ectronic Systems.	Wiley India Pyt. Ltd., Ne	w Delhi. 2008.	Jenanos	mes. me	egrated
3. Saeed	B. Niku	, Introduction to F	Robotics: Analysis, Syste	ems, Applications,	Person	Educatio	n, Inc.,
New	Delhi, 20	06.					
Reference	es Books	5:					
1. David	l G. Alda	atore, Michael B. I	Histand, Introduction to	Mechatronics and	Measur	rement S	ystems,
McG	aw-Hill	Inc., USA, 2003.		1 1 1 1 1 1 1 0 0 0			
2. Gorde	on M. Ma	ur, Industrial Robo	tics, Prentice Hall Intern	ational, UK, 1998.	11.: 200	14	
J. HIVI	K Vara	dan K I Vinov	S Gonalakrishnan Sm	pany Ltd., New De	111, 200	14. MEMS·	Design
and E	evelopm	ent Methodologies	John Wiley & Sons Lto	L. England, 2006.	is and	WILINIS.	Design
			Course Plan				
					7		End
Module			Contents		· · ·	Hours	Sem.
							Exam
	T . 1						Marks
	Introdu	ction to Mechatron	ncs: Structure of Mecha	tronics system. Sen	sors		
	- Char	a and provimity	sensing by magnetic	c optical ultrasc	ient,		
т	inducti	ve. capacitive and	eddy current methods.	Encoders: increme	ental	8	15%
-	and abs	solute, gray coded	encoder. Resolvers and	synchros. Piezoele	ctric	Ũ	10 /0
	sensors	. Acoustic Emissi	ion sensors. Principle a	and types of vibra	tion		
	sensors						

п	Actuators: Hydraulic and Pneumatic actuators - Directional control valves, pressure control valves, process control valves. Rotary actuators. Development of simple hydraulic and pneumatic circuits using standard Symbols.	7	15%
	FIRST INTERNAL EXAM	A.	
ш	Micro Electro Mechanical Systems (MEMS): Fabrication: Deposition, Lithography, Micromachining methods for MEMS, Deep Reactive Ion Etching (DRIE) and LIGA processes. Principle, fabrication and working of MEMS based pressure sensor, accelerometer and gyroscope.	6	15%
IV	Mechatronics in Computer Numerical Control (CNC) machines: Design of modern CNC machines - Mechatronics elements - Machine structure: guide ways, drives. Bearings: anti-friction bearings, hydrostatic bearing and hydrodynamic bearing. Re-circulating ball screws, pre-loading methods. Re-circulating roller screws. Typical elements of open and closed loop control systems. Adaptive controllers for machine tools. Programmable Logic Controllers (PLC) –Basic structure, input/ output processing. Programming: Timers, Internal Relays, Counters and Shift registers. Development of simple ladder programs for specific purposes.	8	15%
	SECOND INTERNAL EXAM		
v	 System modeling - Mathematical models and basic building blocks of general mechanical, electrical, fluid and thermal systems. Mechatronics in Robotics-Electrical drives: DC, AC, brushless, servo and stepper motors. Harmonic drive. Force and tactile sensors. Range finders: ultrasonic and light based range finders 	6	20%
VI	 Robotic vision system - Image acquisition: Vidicon, charge coupled device (CCD) and charge injection device (CID) cameras. Image processing techniques: histogram processing: sliding, stretching, equalization and thresholding. Case studies of Mechatronics systems: Automatic camera, bar code reader, pick and place robot, automatic car park barrier system, automobile engine management system. 	7	20%
	END SEMESTER EXAM	<u> </u>	1

Time: 3 hrs

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3X10 = 30 marks)

Part B

There should be 2 questions each from module III and IV. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Course co	de Course Name	L-T-P- Credite	Year of
ME409	COMPRESSIBLE FLUID FLOW	2-1-0-3	2016
Duran and		2-1-0-5	2010
Prerequi	site: ME205 Thermodynamics	AA	
Course Obj	jectives:	AIV	1
• To fa	amiliarize with behavior of compressible gas flow.	CAI	
• Tou	inderstand the difference between subsonic and supersonic flow	A	
• 101	amiliarize with high speed test facilities	71 14	
Syllabus Introductio Irreversible Flow throu visualizatio	n to Compressible Flow, Wave propagation, One dimension e discontinuity in supersonic flow, Flow in a constant area duct ugh constant area duct with heat transfer (Rayleigh Flow) on and measurement, measurement in compressible flow, Wind	nal steady is with friction , Compressib tunnels	entropic flow, (Fanno Flow), ple flow field
Expected o	utcome:		
The student	s will be able to	11 0	
1. 1	sentropic nozzle flow, constant area flow with friction (Eapport	flow) and con	including: stant area flow
Ĭ	with heat transfer (Rayliegh flow).		stant area now
ii. I	Derive the conditions for the change in pressure, density and ter	mperature for	flow through a
r ::: T	ormal shock.	d hadiaa and	
iv. I	Know the various measuring instruments used in compressible	flow	concave corners
Data book/G	Gas tables:		
1. Yahya S	. M., Gas Tables, New Age International, 2011		
2. Balachai	ndran P., Gas Tables, Prentice-Hall of India Pvt. Limited, 2011		
 Text Books 1. Balachar 2. Rathakri 3. Yahya S Internati 	ndran P., Fundamentals of Compressible Fluid Dynamics, PHI ishnan E., Gas Dynamics, PHI Learning, 2014 M., Fundamentals of Compressible Flow with Aircraft and Ro onal Publishers, 2003	Learning. 200 ocket Propuls)6 ion, New Age
References	Books:	1	
 Anders Shapiro 	on, Modern compressible flow, 3e McGraw Hill Education, Dynamics and Thermodynamics of Compressible Flow – Vol	n, 2012 1., John Wil	ey & Sons,1953
	2014		

	Course Plan		
Module	Contents	Hours	End Sem. Exam
	ADI ADIDITI IZALA	N.A.	Marks
Ι	Introduction to Compressible Flow- Concept of continuum-system and control volume approach- conservation of mass, momentum and energy- stagnation state- compressibility-Entropy relations. Wave propagation- Acoustic velocity-Mach number-effect of Mach number on compressibility- Pressure coefficient-physical difference between incompressible, subsonic, sonic and supersonic flows- Mach cone-Sonic boom-Reference velocities- Impulse function-adiabatic energy equation-representation of various flow regimes on steady flow adiabatic ellipse.	8	15%
П	One dimensional steady isentropic flow- Adiabatic and isentropic flow of a perfect gas- basic equations- Area-Velocity relation using 1D approximation-nozzle and diffuser-mass flow rate-chocking in isentropic flow-flow coefficients and efficiency of nozzle and diffuser- working tables-charts and tables for isentropic flow- operation of nozzle under varying pressure ratios –over expansion and under expansion in nozzles.	7	15%
	FIRST INTERNAL EXAM		
III	Irreversible discontinuity in supersonic flow- one dimensional shock wave- stationary normal shock- governing equations- Prandtl- Meyer relations- Shock strength- Rankine- Hugoniot Relation- Normal Shock on T-S diagram- working formula- curves and tables-Oblique shock waves - supersonic flow over compression and expansion corners (basic idea only).	7	15%
IV	Flow in a constant area duct with friction (Fanno Flow) – Governing Equations- Fanno line on h-s and P-v diagram- Fanno relation for a perfect gas- Chocking due to friction- working tables for Fanno flow- Isothermal flow(elementary treatment only)	6	15%
	SECOND INTERNAL EXAM		
V	Flow through constant area duct with heat transfer (Rayleigh Flow)- Governing equations- Rayleigh line on h-s and P-v diagram- Rayleigh relation for perfect gas- maximum possible heat addition- location of maximum enthalpy point- thermal chocking- working tables for Rayleigh flow.	6	20%
VI	Compressible flow field visualization and measurement- Shadowgraph-Schlieren technique- interferometer- subsonic compressible flow field -measurement (Pressure, Velocity and Temperature) – compressibility - correction factor- hot wire anemometer- supersonic flow measurement- Shock tube-Rayleigh Pitot tube- wedge probe- stagnation temperature probe- temperature recovery factor –Kiel probe - Wind tunnels – closed and open type- END SEMESTER EXAM	8	20%

2014

Course code	Course Name	L-T-P- Credits	Year of Introduction				
ME431	MECHANICAL ENGINEERING LAB.	0-0-3-1	2016				
Prerequisite : ME302 Heat and mass transfer, ME304 Dynamics of machinery							
Course Ob	jectives:						
• T	o conduct the various heat transfer experiments	A A A					
• T	o practice calibration of thermometer and pressure gauges	AM					
• T	o do experiments on dynamics						
Syllabus		A					
Syllabus List of over	rimonte:	1					
Hoar trans	a ments.						
1 Deter	mination of I MTD and effectiveness of parallel flow. Counter fl	ow and cross f	low heat				
exch	ingers(double nine heat exchanger)	ow and cross r	low near				
2. Deter	minipulation of heat transfer coefficients in free convection(free con	vection appar	atus)				
3. Deter	mination of heat transfer coefficients in forced convection (force	ed convection a	apparatus)				
4. Deter	mination of thermal conductivity of solids(composite wall)						
5. Deter	mination of thermal conductivity of powder						
6. Deter	mination of Thermal conductivity of liquids						
7. Deter	mination of emissivity of a specimen (emissivity apparatus)						
8. Deter	mination of Stefan Boltzman constant (Stefan Boltzmann appara	tus)					
9. Study	and performance test on refrigeration (Refrigeration Test rig)						
10. Study	and performance test air conditioning equipment(air conditionir	ig test rig)					
11. Perfo	rmance study on heat pipe(Heat pipe)						
12. Calib	ration of Thermocouples						
13. Calib	ration of Pressure gauge						
Dynamics							
14. Whir	ling of shaft						
15. Gyro	scope						
16. Univ	ersal governor apparatus						
17. Free	vibration analysis						
18. Forc	ed vibration analysis						
Note: M	inimum 9 experiments in heat transfer and 3 experiments in dynam	nics are manda	tory				
Expected o	utcome:	/					
The student	s will be able to						
1. Cond	uct experiments to determine thermal conductivity of materials						
2. Deter	mine heat transfer coefficient, LMTD etc						
3. Do c	alibration of thermometers and pressure gauges						
4. Demo	onstrate the effect of unbalances resulting from rotary motions						
5. Visua	lise the effect of dynamics on vibrations in single and multi deg	ree of freedom	system				
6. Demo	onstrate the working principle of governor /gyroscope and demo	nstrate the effe	ct of forces and				
mom	ents on their motion						

Course code	Course Name	L-T-P- Credits	Ye Intro	ear of duction
ME461	Aerospace Engineering	3-0-0-3	2	016
-	Prerequisite : Nil		1	
Course O	bjectives: :			
• To	understand the fundamentals of aerospace engineering		1	
• To	provide an understanding of flight instruments		61	
	TECHNOLOGI	CA	1	
Syllabus:	IECHNOLOGI	A	L	
The atmos	sphere, airfoil theory, 2D, 3D or Finite aero foils Prope	llers, Aircr	aft perfe	ormance,
Flight Inst	ruments, stability of aircrafts, wind tunnel testing	Y I		
Expected	Outcomes:			
The stude	ts will be able to			
j	. Identify, formulate and solve aerospace engineering pr	oblems		
i	Perform analysis of flight dynamics of aircrafts			
Text book	s:			
1. A.	C. Kermode, Mechanics of flight, Prentice Hall, 2007			
2. An	derson, Fundamentals of Aerodynamics, McGraw-Hill, 20	1002		
3. EF	IJ Pallett, Aircraft Instruments and Integrated systems, Long	gman,1992		
Kelerence	DOOKS:	Hodder &	Stought	on 1977
1. 110	COURSE PLAN	moduler &	Stought	511,1777
				E- J
				Ena Som
Module	Contents]	Hours	Seill. Evam
			/	Marks
	Total A			
	The atmosphere-characteristics of troposphere, stratos	phere,		
	thermosphere, and ionosphere- pressure, temperature and	density		
т	variations in the atmosphere. Application of dimensional a	analysis ro foils	Q	150/
1	-Nomenclature and classification- pressure distribute	tion in	0	15 70
	inviscid and real flows- momentum and circulation th	eory of		
	aerofoil- characteristics.			
		· ·		
	3D or Finite aero foils – effect of releasing the wingtip	s- wing		
	system lifting line theory-wing load distribution – aspe	ct ratio		
II	induced drag calculation of induced drag from more	mentum	7	15%
	considerations. Skin friction and from drag- changes i	n finite		
	wing plan shape			
	FIRST INTERNAL EXAMINATION			

III	Propellers – momentum and blade element theories –propeller coefficients and charts. Aircraft performance-straight and level flight –power required and power available graphs for propeller and jet aircraft	6	15%
IV	Gliding and climbing –rate of climb-service and absolute ceilings-gliding angle and speed of flattest glide takeoff and landing performance – length of runway required- aircraft ground run- circling flight – radius of tightest turn-jet and rocket assisted take –off high lift devices-range and endurance of airplanes- charts for piston and jet engine aircrafts.	1	15%
	SECOND INTERNAL EXAMINATION	h. her	
V	Flight Instruments-airspeed indicator, calculation of true air speed-altimeter, gyrohorizon -direction indicator-vertical speed indicator –turn and back indicator-air temperature indicator. (Brief description and qualitative ideas only). Ideas on stability- static and dynamic stability- longitudinal, lateral and directional stability- controls of an aero plane- aerodynamic balancing of control surfaces- mass balancing (Qualitative ideas only).	7	20%
V1	Principles of wind tunnel testing –open and closed type wind tunnels-wind tunnel balances supersonic wind tunnels. Study of subsonic, Transonic, and supersonic aircraft engines (Description with figures Only).Elementary ideas on space travel-calculation of earth orbiting and escape velocities ignoring air resistance and assuming circular orbit.	7	20%
	FND SEMESTER EXAMINATION		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Course o	code	Course Name	L-T-P- Credits	Year of Introduction
ME46	53	Automobile Engineering	3-0-0-3	2016
Pre requi	sites: 1	Vil		
Course of • To • To • To	bjectiv know under update	es the anatomy of automobile in general stand the working of different automotive systems and the latest developments in automobiles	subsystem	s
Syllabus:-	- Engin	e, clutch, transmission, steering, brakes, suspension an	d aerodyna	amics
COURSE	OUT	COMES:		
The studer	nts will	be able to:		
i. Pra	acticall	y identify different automotive systems and subsystem	s.	
ii. Un aut iii. De	iderstai tomobi evelop a	nd the principles of transmission, suspension, steering le a strong base for understanding future developments in	and brakin	g systems of an obile industry
 Heinz Heinz Heinz Hillier Tom D 	Heisle Heisle and Po Denton,	r, Advanced engine technology, Butterworth-Heineman r, Advanced vehicle technology, Society of Automotive eter Coobes, Fundamentals of motor vehicle technology Automobile mechanical and electrical systems, Butter	e Engineer y, Nelson 7 worth-Hei	s Inc, 2002 Thornes, 2004 nemann, 2011
		Course Plan		
Module		Contents	Hours	End Sem. Exam. Marks
	Pistor	: - material for piston, clearances, piston rings, types,	1	
-	Pistor rod, c	or two compression rings, oil control ring, piston pin. for IC engine, piston rings, piston pin, connecting rank shaft, crank pin, cam shaft, valves, fly wheel,	1	
Ŧ	stress	in a fly wheel rim, simple problems.	1	150/
I	Petrol and ca	fuel injection systems: - comparison petrol injection arbureted fuel supply systems- comparison –multiport	1	15%
	fuel i (CRD	njection (MPFI) and common rail direct injection I) systems.	1	
-	Super	charging systems: fundamentals, naturally aspirated es and supercharged engines– Turbo charger, turbo	1	

Hybrid cars, safety overview -Formula-I engine technology: overview, electrical technology, brakes, transmission	1	
technology.Friction clutch:- fundamentals, driven plate inertia, driven plate transmitted torque, driven plate wear –angular driven plate cushioning and torsional damping, clutch friction materials, when clutch is worn out.		
Pull type diaphragm clutch, multiple diaphragm clutch, multi-plate hydraulically operated automatic transmission clutch, semi centrifugal clutch, fully automatic centrifugal clutch, and integral single plate diaphragm clutch.	1	15%
Need of gear box, resistance to vehicle motion, power to weight ratio, speed operating range-five speed and reverse sliding mesh, constant mesh, and synchromesh gear boxes:- gear synchronization and engagement.	1	
Over drives – hydrodynamic fluid couplings: - efficiency and torque capacity – fluid friction coupling- torque converters.	1	
FIRST INTERNAL EXAMINATION		
Steering:-basic principle of a steering system:- swinging beam system – Ackermann –over steer and under steer –	1	
Swivel axis inclination: centre point steering, camber, king pin inclination, negative offset, caster, toe-in and toe-out	1	NΤ
Steering gear box: - fundamentals screw and nut steering gear mechanism-worm and roller type steering gear box –	1	15%
Re-circulating ball nut and rocker lever, re-circulating ball rack and sector steering gear box– need of power assisted steering	1	
External direct coupled and rack and pinion and integrated steering power cylinder, power assisted steering lock limitations	1	
Suspension: - suspension geometry, terminology- Macpherson strut friction and spring offset - suspension roll centers:-roll centers, roll axis, roll centre height, short swing and long arm suspension transverse double	1	
wishbone, parallel trailing double arm and vertical pill strut suspension, Macpherson strut suspension, semi-trailing arm rear suspension, telescopic suspension.	1	15%
High load beam axle leaf spring, sprung body roll stability. Rear axle beam suspension- body roll stability analysis:- body roll couple, body roll stiffness, body over turning couple	1	
	 Hybrid cars, safety overview -Formula-I engine technology: overview, electrical technology, brakes, transmission technology. Friction clutch:- fundamentals, driven plate inertia, driven plate transmitted torque, driven plate wear -angular driven plate cushioning and torsional damping, clutch friction materials, when clutch is worn out. Pull type diaphragm clutch, multiple diaphragm clutch, multi-plate hydraulically operated automatic transmission clutch, semi centrifugal clutch, fully automatic centrifugal clutch, and integral single plate diaphragm clutch. Need of gear box, resistance to vehicle motion, power to weight ratio, speed operating range-five speed and reverse sliding mesh, constant mesh, and synchromesh gear boxes: gear synchronization and engagement. Over drives – hydrodynamic fluid couplings: - efficiency and torque capacity – fluid friction coupling- torque converters. FIRST INTERNAL EXAMINATION Steering:-basic principle of a steering system:- swinging beam system – Ackermann –over steer and under steer – slip angle, camber, caster etc. Swivel axis inclination: centre point steering, camber, king pin inclination, negative offset, caster, toe-in and toe-out Steering gear box: - fundamentals screw and nut steering gear mechanism-worm and roller type steering gear box – Re-circulating ball nut and rocker lever, re-circulating ball rack and sector steering gear box – need of power assisted steering. External direct coupled and rack and pinion and integrated steering power cylinder, power assisted steering lock limitations Suspension: - suspension geometry, terminology-Macpherson strut friction and spring offset - suspension roll centers:-roll centers, roll axis, roll center height, short swing and long arm suspension, transverse double wishbone, parallel trailing double arm and vertical pill strut suspension, telescopic suspension. High load beam axle leaf spring, sprug body roll stability. Rea	Hybrid cars, safety overview - Formula-1 engine technology: 1 overview, electrical technology, brakes, transmission 1 Friction clutch:- fundamentals, driven plate inertia, driven plate transmitted torque, driven plate wear – angular driven plate cushioning and torsional damping, clutch friction materials, when clutch is worn out. 1 Pull type diaphragm clutch, multiple diaphragm clutch, semi centrifugal clutch, fully automatic centrifugal clutch, semi centrifugal clutch, fully automatic centrifugal clutch, and integral single plate diaphragm clutch. 1 Need of gear box, resistance to vehicle motion, power to weight ratio, speed operating range-five speed and reverse sliding mesh, constant mesh, and synchromesh gear boxes:-gear synchronization and engagement. 1 Over drives – hydrodynamic fluid couplings: - efficiency and torque capacity – fluid friction coupling- torque converters. 1 FIRST INTERNAL EXAMINATION Steering:-basic principle of a steering system:- swinging beam system – Ackermann –over steer and under steer – slip angle, camber, caster etc. 1 Swivel axis inclination: centre point steering, camber, king pin inclination, negative offset, caster, toe-in and toe-out 1 Steering gear box: - fundamentals screw and nut steering gear mechanism-worm and roller type steering gear box – Re-circulating ball nut and rocker lever, re-circulating ball 1 1 I ack and sector steering gear box – need of power assisted steering power cylinder, power assisted steering lock limitations 1 Suspension:

	Body weight transfer, body direct weight transfer couple,		
	body roll couple distribution, body roll weight transfer,	1	
	lateral force distribution.		
	Anti roll bars and roll stiffness:- anti roll bar function,		
	operating principle, anti roll bar action caused by the body	1	
	rolling, single wheel lift -rubber spring bumper:-bump stop	AA	
	function and characteristics, axis inclination.	AN	
	Rear suspension: - live rigid axle suspension, non drive rear		
	suspension- swing arm rear wheel drive independent	4	
	suspension.		-
	Low pivot split axle coil spring wheel drive independent	1	
	suspension, trailing and semi trailing arm rear wheel drive	1	15%
	independent suspension.		
	Transverse double link arm rear wheel drive independent	1	
	suspension, De Dion axle rear wheel suspension -	1	
	Hydrogen suspension, hydro-pneumatic automatic height		
	SECOND INTERNAL EXAMINATION		
	Brakes:- mechanical and hydraulic brakes (review only) –	1	
	properties of friction lining and pad materials, efficiency,		
	stopping distance, theory of internal shoe brake, equations –		
	effect of expanding mechanism of shoes on total braking	1	
	torque, equations.		
	Braking vehicles:- brakes applied on rear, front and all four	1	
	wheels, equations –calculation of mean lining pressure and		
	heat generation during braking operation, equations. –	1	
X 7	braking of venicle moving on curved pain, simple	1	200/
V	Anti Look Droking system (ADS), need and advantages of		20%
	And Lock Braking system (ABS):- need and advantages of	1	
	air-electric ABS	1	
	Brake servos: - operating principle, vacuum servo - direct		
	acting suspended vacuum assisted brake servo unit	1	
	operation - hydraulic servo assisted brake systems	1	
	Pneumatic operated disc brakes – air operated brake		
	systems: - air over hydraulic brake system - Three line	1	
	brake system electronic-pneumatic brakes.	-	
	Aerodynamic drag: pressure drag, air resistance, opposing		
	motion of a vehicle, equations, after flow wake. drag	1	
	coefficients, various body shapes, base drag, vortices.	1	
T 74	trailing vortex drag, attached transverse vortices.	1	2 00/
V1	Aerodynamic lift:-lift coefficients, vehicle lift, underbody	1	20%
	floor height versus aerodynamic lift and drag, aerofoil lift	1	
	and drag, front end nose shape.	1	
	Car body drag reduction:-profile edge chamfering, bonnet	1	
		1I	

slope and wind screen rake, roof and side panel chamfering,
rear side panel taper, underbody rear end upward taper, rear
end tail extension, underbody roughness.
Aerodynamic lift control:- underbody dams, exposed wheel
air flow pattern, partial enclosed wheel air flow pattern, rear 1
end spoiler, negative lift aerofoil wings.
After body drag: - square back drag, fast back drag, hatch back drag, notch back drag.
END SEMESTER EXAMINATION

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

For more study materials>www.ktustudents.in

2014

Course code	Course Name	L-T-P- Credits	Ye Intro	ar of duction
ME465	Industrial Hydraulics	3-0-0-3	2	016
1111100	Prerequisite : Nil			010
Course O	bjectives: :			
1. To 2. To	introduce various fluid power systems get knowledge on fluid power circuits	AN	1	
Syllabus:	TECHNIQUOQU	2 4	-	
Introduction and rams temperature	on to fluid power, Properties of fluids. Selection of fluids, Pu Fluid power pumping systems and components, Hyd re control, Piping systems, Control circuits	mps, Hyd Iraulic A	draulic o Actuator	cylinders s, Fluid
Expected	Outcomes:			
The studer	its will be able			
1. To	understand the various components used in fluid power syste	ems		
2. To	select the suitable system for a particular application			
3. To	know the various fluid circuits used in hydraulic systems			
Text book	s:			
1. B.	Lall, Oil Hydraulics, International Literature Association			
2. D.	A. Pease, Basic Fluid Power, Prentice Hall, 1986			
3. J.	J. Pipenger, <u>Tyler Gregory Hicks</u> , Industrial Hydraulics, McC	Graw Hill	,1979	
4. Pir	ches, Industrial Fluid Power, Prentice Hall, 1989			
5. R.I	K. Bansal, Fluid Mechanics, Laxmi Publication (P) Ltd.,2017			
Reference				
1. IS	O - 1219, Fluid Systems and components, Graphic Symbols			
2. An	drew A. Parr, Hydraulics and Pneumatics, Elsevier, 1999			
3. Mi	chael J. Prinches and Ashby J. G, Power Hydraulics, Prentice	Hall,198	8	
4. Ye	aple, Fluid Power Design Handbook, CRC Press, 1995			
	COURSE PLAN			
	Estd.			End
Module	Contents		Hours	Sem. Exam. Marks
	Introduction to fluid power – Hydraulics and Pneumatics sy	stems		
	- Fluid power systems - Fundamentals of fluid mecha	nics,		
Ι	Properties of fluids. Selection of fluids, additives, effe	ect of	7	15%
	temperature and pressure on hydraulic fluids, Measurem	ent of		
	physical parameters – Hydraulic symbols			
	Pumps: Types , classification , principle of working	ng &		
п	constructional details of vane pump, gear pumps, radial and	axial	7	15%
	plunger pumps, Power and efficiency calculations, char, C	urves,	,	
	selection of pumps for hydraulic power transmission			
	FIRST INTERNAL EXAMINATION			

Ш	Hydraulic cylinders and rams – Fluid power pumping systems and components. Pressure accumulators – Functions – Fluid reservoirs – Filter in hydraulic circuits. Loading and replacement of filter elements – Materials for filters.	7	15%
IV	Hydraulic Actuators (i) Linear and Rotary. (ii) Hydraulic motors - Types- Vane, Gear, Piston types, radial piston. (iii) Methods of control of acceleration, deceleration. (iv) Types of cylinders and mountings. (v) Calculation of piston velocity, thrust under static and dynamic applications, considering friction, inertia loads. (vi) Design considerations for cylinders. Cushioning of cylinders.	7	15%
	- Anna		
V	Fluid temperature control – Fluid pressure control –control valves – Sequence -valve – Counterbalance valve-unloading valve – Friction control valve – Servo systems, Hoses & Pipes : Types , materials , pressure drop in hoses/pipes. Hydraulic piping connections.	7	20%
V1	Simple reciprocating, Regenerative, Speed control (Meter in, Meter out and bleed off), Sequencing, Synchronization, transverse and feed, circuit for riveting machine, automatic reciprocating, fail safe circuit, counter balance circuit, actuator locking, circuit for hydraulic press, unloading circuit (Numerical treatment), motor breaking circuit	7	20%

END SEMESTER EXAMINATION

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts Part A

There should be 2 questions each from module I and II Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Course code	Course Name	L-T-P- Credits	Ye Intro	ear of duction
ME467	Cryogenic Engineering 3	3-0-0-3	2	016
Prerequi	isite : NIL			
Course (Objectives: :			
• T	o provide the knowledge of evolution of low temperature science	e	A.	
• To	o provide knowledge on the properties of materials at low temp	perature	1	2
• To cr	o familiarize with various gas liquefaction systems and to provid cyogenic storage and transfer lines	de desig	n aspec	ets of
Syllabus	I IN IN AF D.CITY		line of	
Introduct	ion to Cryogenics, Applications of Cryogenics, Properties of	f materia	als at c	ryogenic
Cryogeni	of fluid storage and transfer systems. Cryogenic instrumentation	c Reirig	change	systems,
cryogenic	c systems	, neat ex	change	s used in
Expected	l Outcomes:			
The stude	ents will be able to			
	i. Understand properties of material at cryogenic temperature	es.		
i	ii. Know about various liquefaction systems			
i	ii. Get ideas on cryogenic refrigeration systems, cryogen	nic instr	umenta	tion and
	any a gania haat ay ahan gang			
	cryogenic near exchangers	6		
Text boo	ks IL Boll In Cruggenia Engineering	(
Text boo 1. J.	H. Boll Jr, Cryogenic Engineering			
Text boo 1. J. 2. R 3 P	H. Boll Jr, Cryogenic Engineering B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959 andal E Barron, Cryogenic systems, McGraw Hill, 1986	E	N	T
Text boo 1. J. 2. R 3. R	Ks H. Boll Jr, Cryogenic Engineering B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959 andal F.Barron, Cryogenic systems, McGraw Hill, 1986	E	N	Т
Text boo 1. J. 2. R 3. R Reference 1 1 K	As H. Boll Jr, Cryogenic Engineering . B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959 andal F.Barron, Cryogenic systems, McGraw Hill, 1986 ce books: laus D Timmerhaus and Thomas M Elynn – Cryogenic Proces	Engir		Plenum
Text boo 1. J. 2. R 3. R Reference I. 1. K	cryogenic heat exchangers oks H. Boll Jr, Cryogenic Engineering . B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959 andal F.Barron, Cryogenic systems, McGraw Hill, 1986 ce books: laus D.Timmerhaus and Thomas M.Flynn, Cryogenic Proces ress, New York, 1989.	ss Engir	neering,	Plenum
Text boo 1. J. 2. R 3. R Reference R 1. K Pr	cryogenic heat exchangers oks H. Boll Jr, Cryogenic Engineering . B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959 andal F.Barron, Cryogenic systems, McGraw Hill, 1986 ce books: llaus D.Timmerhaus and Thomas M.Flynn, Cryogenic Proces ress, New York, 1989.	ess Engir	neering,	Plenum
Text boo 1. J. 2. R 3. R Reference D 1. K P1 P1	cryogenic near exchangers bks H. Boll Jr, Cryogenic Engineering . B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959 andal F.Barron, Cryogenic systems, McGraw Hill, 1986 ce books: laus D.Timmerhaus and Thomas M.Flynn, Cryogenic Proces ress, New York, 1989.	ess Engir	neering,	Plenum
Text boo 1. J. 2. R 3. R Reference 1. K P1 P1	cryogenic heat exchangers oks H. Boll Jr, Cryogenic Engineering . B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959 andal F.Barron, Cryogenic systems, McGraw Hill, 1986 ce books: laus D.Timmerhaus and Thomas M.Flynn, Cryogenic Proces ress, New York, 1989.	ess Engir	neering, Hours	Plenum End Sem.
Text boo 1. J. 2. R 3. R Reference 1. K Pr	Arrow Cryogenic Inear exchangers Pks H. Boll Jr, Cryogenic Engineering . B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959 andal F.Barron, Cryogenic systems, McGraw Hill, 1986 The books: Iaus D.Timmerhaus and Thomas M.Flynn, Cryogenic Process ress, New York, 1989. Eston Contents	ess Engir	neering, Hours	Plenum End Sem. Exam. Marks
Text boo 1. J. 2. R 3. R Reference 1. K P1 P1	Arroduction to Cryogenic Systems Historical development	ess Engir	neering, Hours	Plenum End Sem. Exam. Marks
Text boo 1. J. 2. R 3. R Reference 1. K P1 P1	cryogenic heat exchangers bks H. Boll Jr, Cryogenic Engineering . B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959 andal F.Barron, Cryogenic systems, McGraw Hill, 1986 ce books: laus D.Timmerhaus and Thomas M.Flynn, Cryogenic Proces ress, New York, 1989. Ested Introduction to Cryogenic Systems, Historical development, Temperature properties of Engineering Materials, Mecha	ess Engir	neering, Hours	Plenum End Sem. Exam. Marks
Text boo 1. J. 2. R 3. R Reference 1. K Pr Module	cryogenic heat exchangers bks H. Boll Jr, Cryogenic Engineering . B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959 andal F.Barron, Cryogenic systems, McGraw Hill, 1986 ce books: laus D.Timmerhaus and Thomas M.Flynn, Cryogenic Proces ress, New York, 1989. Ested Contents Introduction to Cryogenic Systems, Historical development, Temperature properties of Engineering Materials, Mecha properties- Thermal properties- Electric and magnetic properties	ss Engir	neering, Hours	Plenum End Sem. Exam. Marks
Text boo 1. J. 2. R 3. R Reference 1. K P1 P1	Introduction to Cryogenic Systems, Historical development, Temperature properties of Engineering Materials, Mecha properties- Thermal properties- Electric and magnetic properties.	ess Engir	Hours	Plenum End Sem. Exam. Marks
Text boo 1. J. 2. R 3. R Reference 1. K P1 P1 Module	Introduction to Cryogenic Systems, Historical development, Temperature properties of Engineering Materials, Mecha properties- Thermal properties- Electric and magnetic properties. Applications of Cryogenics: Applications in space,	ss Engir	Hours	Plenum End Sem. Exam. Marks
Text boo 1. J. 2. R 3. R Reference 1. K Pl Pl	Introduction to Cryogenic Systems, Historical development, Temperature properties of Engineering Materials, Mecha properties- Thermal properties- Electric and magnetic properties. Applications of Cryogenics: Applications in space, Processing, super conductivity, Electrical Power, Bio	ss Engir Low anical ties – Food ology,	Hours 8	Plenum End Sem. Exam. Marks
Text boo 1. J. 2. R 3. R Reference 1. K P1 P1 Module I I I I I I I	Arrow and a second seco	Low anical ties – Food plogy, rature	Hours	Plenum End Sem. Exam. Marks
Text boo 1. J. 2. R 3. R Reference 1. K P1 P1	Arrow and a second seco	ss Engir Low anical ties – Food ology, rature	Hours 8	Plenum End Sem. Exam. Marks
Text boo 1. J. 2. R 3. R Reference 1. K P1 P1 Module I I I I I I	Addet is the second systems ideal system, Joule Thomson expand Addet is properties of engineering and the systems ideal system. In the second	ss Engir	Hours 8	Plenum End Sem. Exam. Marks 15%
Text boo 1. J. 2. R 3. R Reference 1. K Pr Module I I	Introduction to Cryogenic Systems, Historical development, Temperature properties of Engineering Materials, Mecha properties- Thermal properties. Applications of Cryogenics: Applications in space, Processing, super conductivity, Electrical Power, Bio Medicine, Electronics and Cutting Tool Industry. Low temper properties of engineering Materials Medication systems ideal system, Joule Thomson expan Adiabatic expansion, Linde Hampson Cycle, Claude & Caso	sss Engir Low anical ties – Food ology, rature nsion, caded	Hours 8	Plenum End Sem. Exam. Marks 15%

III	Gas liquefaction systems: Introduction-Production of low temperatures-General Liquefaction systems- Liquefaction systems for Neon. Hydrogen and Helium –Critical components of Liquefaction systems	6	15%	
IV	Cryogenic Refrigeration systems: Ideal Refrigeration systems- Refrigeration using liquids and gases as refrigerant- Refrigerators using solids as working media;,	6	15%	
	SECOND INTERNAL EXAMINATION	1		
V	Cryogenic fluid storage and transfer systems: Cryogenic Storage vessels and Transportation, Thermal insulation and their performance at cryogenic temperatures, Super Insulations, Vacuum insulation, Powder insulation, Cryogenic fluid transfer systems.	8	20%	
V1	Cryogenic instrumentation, Pressure flow-level and temperature measurements. Types of heat exchangers used in cryogenic systems(only description with figure) Cryo pumping Applications	7	20%	
END SEMESTER EXAMINATION				

Estd.

Time: 3 hrs

Maximum marks: 100

The question paper should consist of three parts Part A

There should be 2 questions each from module I and II Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

114 There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Course code	Course Name L-T-P- Year of Credits Introduct							
ME4	59 FINITE ELEMENT ANALYSIS	3-0-0-3	2	016				
	Prerequisite : Nil	AA						
Course (bjectives	AA	1					
1. To le	arn the mathematical background of finite element methods.	A	1					
2. To u	iderstand the basics of finite element formulation.	A						
3. To p	actice finite element methodologies through structural and heat tr	ansfer probl	ems.					
Syllabus Introduct problems functions using min elements;	Syllabus Introduction; Brief history; Review of elasticity; Direct approach;1D bar element; Analogous problems; Beam elements; Plane truss; Coordinate transformations; Interpolation functions; Shape functions; Variational methods; Strong and weak form; Rayleigh Ritz method; FE formulation using minimization of potential; Consistent nodal loads; Higher order elements; Iso parametric elements; Weighted residual methods; FE A software peakages							
Expected	outcome							
The stude	nts will be able to							
i. une	lerstand the mathematical background of FEM .							
ii. sol	ve real life problems using finite element analysis							
Text Boo 1. Cha 2004 2. Hutt 3. Log 4. Sesh	ks: ndrupatla T R., Finite Element Analysis for Engineering and Tecl on D V., Fundamentals of Finite Element Analysis, Tata McGrav an D L., A first course in the Finite Element Method, Thomson-E u P., Text Book of Finite Element Analysis, PHI Learning Pvt. L	nnology, Un v-Hill, 2005 ngineering, td., 2003	iversit 2012	y Press,				
Referenc	es Books:							
I. Coo	K R D., Malkus D S., Plesha M E., Witt R J., Concepts and Analys	sis of Finite						
Eler 2 Ded	tent Applications, John Wiley & Sons, 1981	11:11 2006						
2. Keu	Ty J N., An introduction to the Finite Element Method, McGraw-	HIII, 2000						
	Course	1						
Module	Contents 4		Hours	End Sem. Exam Marks				
I	Introduction to Finite Element Method (FEM)- Brief history- Ap of FEA- Advantages and disadvantages. Review of elasticity- Strain displacement relations- Compatibility strain relations- Boundary conditions- Plane stress, plane strain a axisymmetry.	pplication cy-Stress and	2	15%				

	Direct approach-1D bar element- element stiffness- Assembly of elements- properties of [K] matrix- Treatment of boundary conditions- Stress computation.	4					
п	Analogous problems of torsion, heat conduction and laminar pipe flow. Beam elements- FE formulation-element stiffness matrix- boundary conditions.		20%				
	Plane truss- Element formulation-Co ordinate transformation- Local and global co ordinates- Stress calculations.	4					
FIRST INTERNAL EXAMINATION							
Ш	Interpolation functions-Shape functions- Lagrange interpolation- 1D linear and quadratic element	3	15%				
	Variational methods: Functionals- Strong and weak form- Essential and natural boundary conditions.	3					
	Principle of stationary potential energy- Rayleigh Ritz method.	3					
IV	FE formulation using minimization of potential- B matrix- Element matrices for bar element- Consistent nodal loads.	4	20%				
SECOND INTERNAL EXAMINATION							
V	Higher order elements- Quadratic and cubic elements-Pascal's triangle- Serendipity elements.	3	15%				
	Iso parametric elements, Natural coordinates, Area co ordinates- Quadrilateral elements-Jacobian matrix-Gauss quadrature.	5					
N/I	Weighted residual method: Galerkin FE formulation. Axially loaded bar- Heat flow in a bar	5	15%				
¥1	Structure of FEA software package. Introduction to Modal analysis, non linear analysis and coupled analysis.	2					
END SEMESTER EXAMINATION							

2014

Maximum marks: 100,

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

For more study materials>www.ktustudents.in

Time: 3 hrs

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

For more study materials>www.ktustudents.in

Estd.

2014

	Course Name	L-T-P- Credits	Ye Intro	ear of duction
ME471	Optimization Techniques	3-0-0-3	2	016
Prerequis	site - ME372 Operations Research			
Course O • To	bjective: learn the various optimization techniques for effective de	cision making	1	
Syllabus:	TECHNOLOGI	CAI	4	
Linear pro	ogramming – integer programming– network models – g	oal programm	ning – c	dynamio
programm	ning – nonlinear programming – nontraditional optimizatio	n.		
Expected	Outcome:			
• Th	e students will be able to understand optimization teo	chniques and	apply 1	them in
Text Boo	ks:			
3. Pa	nnerselvam, R., Design and Analysis of Algorithms, Prent	ice Hall of Inc		
4. Ta	07. ha, H. A., Operations Research, Pearson, 2004.		lia, Nev	w Delhi
4. Ta	07. ha, H. A., Operations Research, Pearson, 2004. e Books:		lia, Nev	w Delhi
4. Ta Reference 1. Ba Sin 2. Ge 3. Ra So 5. Sr Pv	 07. ha, H. A., Operations Research, Pearson, 2004. e Books: anks, J., Carson, J. S., Nelson, B. L., and Nicol, D. mulation, Third Edition, Pearson Education, Inc., 2001 bel, B. S. and Mittal, S. K., Operations Research, Pragati P avindran, Phillips and Solberg, Operations Research Principles and Application (Comparison) bel, B. S. "Operations Research-Principles and Application" bel, B. C. "Operations Research-Principles and Application" 	M., Discrete rakashan, Mee ciples and Prac	-Event erut, 199 ctice, W st editio	v Delhi Systen 99. Villey & on, PH
4. Ta Reference 1. Ba Sin 2. Ge 3. Ra So 5. Sr Pv	07. ha, H. A., Operations Research, Pearson, 2004. e Books: inks, J., Carson, J. S., Nelson, B. L., and Nicol, D. mulation, Third Edition, Pearson Education, Inc., 2001 bel, B. S. and Mittal, S. K., Operations Research, Pragati P invindran, Phillips and Solberg, Operations Research Principles inivasan, G. "Operations Research-Principles and Appli- t. Ltd. <u>Course Plan</u>	M., Discrete rakashan, Mee ciples and Prac cations", late	-Event erut, 199 ctice, W st editio	v Delhi Syster 99. Villey & on, PH
4. Ta Reference 1. Ba Sin 2. Go 3. Ra So 5. Sr Pv Module	07. ha, H. A., Operations Research, Pearson, 2004. e Books: unks, J., Carson, J. S., Nelson, B. L., and Nicol, D. mulation, Third Edition, Pearson Education, Inc., 2001 bel, B. S. and Mittal, S. K., Operations Research, Pragati P windran, Phillips and Solberg, Operations Research Princi ns, 1987 inivasan, G. "Operations Research-Principles and Appli t. Ltd. Course Plan Contents	M., Discrete rakashan, Mee ciples and Prac cations", late	-Event erut, 199 ctice, W st editio	w Delhi System 99. Villey & on, PH End Sem. Exam Marks
4. Ta Reference 1. Ba Sin 2. Ge 3. Ra So 5. Sr Pv Module I	07. ha, H. A., Operations Research, Pearson, 2004. e Books: mks, J., Carson, J. S., Nelson, B. L., and Nicol, D. mulation, Third Edition, Pearson Education, Inc., 2001 bel, B. S. and Mittal, S. K., Operations Research, Pragati P windran, Phillips and Solberg, Operations Research Princi ns, 1987 inivasan, G. "Operations Research-Principles and Appli t. Ltd. Course Plan Contents Review of linear programming– revised simplex method	M., Discrete rakashan, Mee ciples and Prace cations", late	-Event erut, 199 ctice, W st edition Hours	w Delhi Systen 99. Villey & on, PH End Sem. Exam Marks 15%

		1	
	Sensitivity analysis – changes affecting feasibility – changes	1 1	
	allecting optimizing	1	
II	Integer programming – importance – applications	1	_
	Branch and bound technique	1	_
	AF ADDUL NALAP	1	150/
	Gomory's cutting plane method	1	13 /0
	Solution to travelling salesman problem	1	_
	FIRST INTERNAL EXAMINATION		
	Network models – minimal spanning tree problem	1	
	PRIM's algorithm	1	
	Kruskal's algorithm	1	
III	Shortest route problem –applications	1	15%
	Systematic method	1	_
	Dijkstra's algorithm	1	_
	Floyd's algorithm	1	
IV	Goal programming – goal programming formulation-application.	1	_
	Simplex method for solving goal programming	1	
	Dynamic programming – terminologies – forward and backward	1	- 15%
	recursion –applications		
	Shortest path problems	1	_
	SECOND INTERNAL EXAMINATION		
	Nonlinear programming convey quasi-convey concave and	1	
	unimodal functions – theory of constrained optimization	1	
		1	_
V	Lagrangean method	1	20%
		1	_
	Kuhn-Tucker conditions	1 1	-
	Nontraditional optimization – computational complexity-	1	
	Introduction to metaheuristics – areas of application	1	-
VI	Genetic algorithm (GA) – terminologies – steps and examples	1	20%
. =	Tabu search (TS) – steps and examples	1	
	Simulated annealing (SA) – steps and examples	1	
	Ant colony optimization (ACO) – steps and examples - Particle	1	
	Swarm Optimization (PSO)-Steps and examples	1	

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

