SEMESTER 7

COMPUTER SCIENCE AND ENGINEERING

FORMAL METHODS IN SOFTWARE ENGINEERING

(Common to CS/CR/CM/CA/AD/AM)

Course Code	PECST741	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2:1:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To enable the learners to apply formal methods for modelling, validation, and verification of software systems.
- **2.** To familiarize with a series of advanced tools that address challenges faced in design, coding, and verification.
- **3.** To provide an introduction to the theoretical aspects of these tools, as well as hands-on exploration.

Module No.	Syllabus Description	Contact Hours
1	Introduction:- Stages in software development; software defects –causes of software defects; techniques for dealing with software defects-Testing and verification, formal methods and tools.	9
2	Ensuring reliability in the design phase:- Conceptual modelling, the tool Alloy, conceptual modelling in Alloy, Analysing Alloy models, Fixing bugs in modelling, How Alloy works? Show that the Konigsberg Bridge Problem has no solution.	9
3	Verification by Model Checking:- Verifier for Concurrent C (VCC): a Hoare-Triple- based tool for Verifying Concurrent C, intra procedure verification of programs, ghost statements.	9
4	Program Verification:- Inter-procedure verification of programs in VCC, function contracts, pure functions, loop invariants, proving total correctness of programs in VCC.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the need and use of formal methods and tools in software engineering.	K2
CO2	Demonstrate conceptual modelling of systems using <i>Alloy</i> .	К3
CO3	Illustrate the process of proving correctness of code using Hoare-Triple based weakest precondition analysis	К3
CO4	Demonstrate program verification using VCC.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	2	3	2	3	2	-	-	-	-	-	-	-
CO3	3	3	3	2	-	-	-	-	-	-	-	-
CO4	3	3	3	3	3	-	-	-	-	-	-	-

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Software Abstractions	Daniel Jackson	MIT Press	2011

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Verifying C Programs: A VCC Tutorial, Working draft, version 0.2	E. Cohen, M. A., Hillebrand, S. Tobies, M. Moskal, W. Schulte		2015			
2	The VCC Manual, Working draft, version 0.2			2016.			

	Links		
No.	Link ID		
1	Tutorial for Alloy Analyzer 4.0 https://alloytools.org/tutorials/online/		

WEB PROGRAMMING

(Common to CS/CA/CM/CD/CR/AD/AM)

Course Code	PECST742	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/	Course Type	Theory

Course Objectives:

- 1. To equip students with the knowledge and skills required to create, style, and script web pages using HTML5, CSS, JavaScript, and related technologies.
- 2. To provide hands-on experience with modern web development tools and frameworks such as React, Node.js, JQuery, and databases, enabling students to design and build dynamic, responsive, and interactive web applications.

Module No.	Syllabus Description	Contact Hours
	Creating Web Page using HTML5 - Introduction, First HTML5 example,	
	Headings, Linking, Images, Special Characters and Horizontal Rules, Lists,	
	Tables, Forms, Internal Linking, meta Elements, HTML5 Form input Types,	
	Input and datalist Elements and autocomplete Attribute, Page-Structure	
	Elements; Styling Web Page using CSS - Introduction, Inline Styles,	
1	Embedded Style Sheets, Linking External Style Sheets, Positioning Elements:,	9
	Absolute Positioning, z-index, Positioning Elements: Relative Positioning,	
	span, Backgrounds, Element Dimensions, Box Model and Text Flow, Media	
	Types and Media Queries, Drop-Down Menus; Extensible Markup Language	
	- Introduction, XML Basics, Structuring Data, XML Namespaces, Document	
	Type Definitions (DTDs), XML Vocabularies	
	Scripting language - Client-Side Scripting, Data Types, Conditionals, Loops,	
	Arrays , Objects , Function Declarations vs. Function Expressions , Nested	
2	Functions , The Document Object Model (DOM) - Nodes and NodeLists,	9
	Document Object, Selection Methods, Element Node Object, Event Types	
	Asynchronous JavaScript and XML - AJAX : Making Asynchronous	

	Requests , Complete Control over AJAX , Cross-Origin Resource Sharing	
	JavaScript library - jQuery - jQuery Foundations - Including jQuery, jQuery	
	Selectors, Common Element Manipulations in jQuery, Event Handling in	
	jQuery	
	JavaScript runtime environment: Node.js - The Architecture of Node.js,	
	Working with Node.js, Adding Express to Node.js; Server-side programming	
	language: PHP - What Is Server-Side Development? Quick tour of PHP,	
_	Program Control , Functions , Arrays , Classes and Objects in PHP , Object-	
3	Oriented Design; Rendering HTML: React - ReactJS Foundations: The	9
	Philosophy of React, What is a component? Built- in components, User-	
	defined components - Types of components, Function Components,	
	Differences between Function and Class Components	
	SPA – Basics, Angular JS; Working with databases - Databases and Web	
	Development, SQL, Database APIs, Accessing MySQL in PHP; Web	
	Application Design - Real World Web Software Design, Principle of Layering	_
4	, Software Design Patterns in the Web Context, Testing; Web services -	9
	Overview of Web Services - SOAP Services, REST Services, An Example	
	Web Service, Web server - hosting options	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Develop structured web pages with HTML5 and style them using CSS techniques, including positioning, media queries, and the box model.	К3			
CO2	Write client-side scripts using JavaScript and utilize jQuery for DOM manipulation, event handling, and AJAX requests to create responsive and interactive user interfaces.	К3			
CO3	Build and deploy server-side applications using Node.js, Express, and PHP, and integrate databases using SQL to store and retrieve data for dynamic content generation.	К3			
CO4	Utilize React for building component-based single-page applications (SPAs), understanding the fundamental principles of component architecture, and leveraging AngularJS for web application development.	К3			

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	-	3	-	-	-	-	-	-	3
CO2	3	3	3	-	3	-	-	-	-	-	-	3
CO3	3	3	3	-	3	-	-	-	-	-	-	3
CO4	3	3	3	-	3	-	-	-	-	-	-	3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Web Development	Randy Connolly, Ricardo Hoar	Pearson	1/e, 2017			
2	Building User Interfaces with ReactJS - An Approachable Guide	Chris Minnick	Wiley	1/e, 2022			
3	Internet & World Wide Web - How to Program	Paul J. Deitel, Harvey M. Deitel, Abbey Deitel	Pearson	1/e, 2011			
4	SPA Design and Architecture: Understanding Single Page Web Applications	Emmit Scott	Manning Publications	1/e, 2015			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	A Hand Book On Web Development: From Basics of HTML to JavaScript and PHP	Pritma Jashnani	Notion press	1/e, 2022		
2	Advanced Web Development with React	Mohan Mehul	ВРВ	1/e, 2020		
3	JavaScript Frameworks for Modern Web Development	Tim Ambler, Sufyan bin Uzayr, Nicholas Cloud	Apress	1/e, 2019		

	Video Links (NPTEL, SWAYAM)
Module No.	Link ID
1	https://archive.nptel.ac.in/courses/106/106/106106222/
2	https://archive.nptel.ac.in/courses/106/106/106106156/

BIOINFORMATICS

Course Code	PECST743	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- To understand the fundamental concepts in Molecular Biology, Genomics, Proteomics and Modelling.
- **2.** To introduce bio macromolecules such as genes and proteins, different biological databases, and tools and algorithms for biological data processing, analysis and interpretation, and the elements of the systems approach to Molecular Biology.

Module	Syllabus Description	Contact Hours
	Molecular Biology Primer (3 hours)	
	Genes, DNAs, RNAs, Proteins, Genomics, Sequencing techniques,	
	Bioinformatics overview and scope	
1	Sequence Alignment (6 hours)	9
	Global and local sequence alignment-dynamic programming algorithms, edit	
	distance, similarity, Needleman Wunsch Algorithm, Smith Waterman	
	Algorithm	
	Biological Databases and Data Formats (3 hours)	
	Genomic and Sequence Data Formats, GenBank, EMBL-Bank, and DDBJ,	
_	PROSITE, NCBI- Database Searching: BLAST, FASTA	
2	Phylogenetics (6 hours)	9
	Phylogenetic Tree basics and Construction Methods, UPGMA, Neighbour	
	joining, Parsimonous trees, Additive trees, Bootstrapping	
	Combinatorial Pattern Matching (9 hours)	
3	Combinatorial Pattern Matching, Repeat finding, Keyword Trees, Suffix	9
	Trees, Heuristic similarity search algorithms, Approximate Pattern Matching	

	R FOR BIOINFORMATICS	
	Variables, Data types, control flow constructs, String manipulation, Pattern	
	Matching, arrays, lists and hashes, File handling, Programs to handle	
	biological data and parse output files for interpretation, packages for sequence	
4	alignment, FASTA, BLAST (Bioconductor, msa, Biostrings etc.)	9
4	Indicative Laboratory/Microproject Tasks	
	Biological Databases, Sequence alignment: BLAST family of programs,	
	FASTA, ClustalW for multiple sequence alignment, Phylogenetics software,	
	Homology Modeling and Model evaluation, Related Programs in R.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	CO
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the Basics of Bioinformatics	K2
CO2	Use various biological databases and apply sequence alignment techniques	К3
CO3	Use molecular phylogenetics to identify evolutionary relationships among various biological species	К3
CO4	Apply the concept of combinatorial pattern matching in bioinformatics	К3
CO5	Use R language and packages to solve bioinformatics problems	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	-	-	-	-	-	-	-	-	2
CO2	3	3	3	-	-	-	-	-	-	-	-	2
CO3	3	3	3	3	-	-	-	-	-	-	-	2
CO4	3	3	3	3	-	-	-	-	-	-	-	2
CO5	3	3	3	3	3	-	-	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	An Introduction to Bioinformatics Algorithms,	N. C. Jones and P. A. Pevzner,	MIT Press, 2004	1/e, 2004							
2	Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools	Supratim Choudhuri	Academic Press	1/e, 2014							
3	R Programming for Bioinformatics	Robert Gentleman	CRC Press	1/e, 2009							

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Introduction to Bioinformatics	T. K. Attwood and D. J. Parry-Smith,	Pearson Education	1/e, 2003							
2	Analysis of Biological Networks,	B. Junker and F. Schreiber,	Wiley Publishers	1/e, 2007							
3	Heterogeneous Information Networks - Principles & Methodologies	Y. Sun and J. Han, Mining	Morgan & Claypool Publishers	1/e, 2012							
4	Multilayer Social Networks,	M. E. Dickison et al,	Cambridge University Press	1/e, 2016							

	Video Links (NPTEL, SWAYAM)							
Module No.	Link ID							
1	https://archive.nptel.ac.in/courses/102/106/102106065/							
2	https://onlinecourses.swayam2.ac.in/cec21_bt04/preview							

INFORMATION SECURITY

(Common to CS/CM/CA/AM)

Course Code	PECST744	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PECST637	Course Type	Theory

Course Objectives:

- 1. To learn the essentials of confidentiality, integrity and apply access control mechanisms to the user information
- 2. To understand threats and Vulnerabilities and design security frameworks
- **3.** To learn how to maintain the accuracy and completeness of data as it is transmitted over the network with total security

Module No.	Syllabus Description	Contact Hours
1	Introduction to Information Security - CIA triad, OSI Security Architecture, Security Goals, Security Services and Mechanisms, Threats, Attacks-Malicious code, Brute force, Timing attack, Sniffers; Access Control Mechanisms - Access Control, Access control matrix, Access control in OS-Discretionary and Mandatory access control, Role-based access control.	9
2	Software Vulnerabilities - Buffer and Stack Overflow, Cross-site Scripting (XSS) and vulnerabilities, SQL Injection and vulnerabilities, Phishing; Malwares - Viruses, Worms and Trjans, Topological worms, Trapdoors, Salami attack, Man-in-the-middle attacks, Covert channels.	9
3	Introduction to security of information storage - Processing, and Transmission. Information Security Management - The ISO Standards relating to Information Security - Other Information Security Management Frameworks - Security Policies - Security Controls - The Risk Management Process - Regulations and legal frameworks; Authentication - User Authentication, Token Based, Biometric Authentication, Remote User Authentication, Multifactor Authentication.	9
4	Security in Networks - Threats in networks, Network Security Controls -	9

Architecture, Encryption, Content Integrity, Strong Authentication, Access	
Controls, Wireless Security, Honeypots, Traffic flow security, Firewalls –	
Design and Types of Firewalls, Personal Firewalls, IDS, Email Security -	
PGP, S/MIME.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B				
 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60			

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the goals, services and mechanisms related to information security.	K2
CO2	Identify the different types of threats and attacks and the design strategies to mitigate the attacks	К2
CO3	Describe the information security practices within an organization, ensuring data protection and compliance with industry standards and legal requirements.	К2
CO4	Discuss the skills to enhance network security, protect data in transit, and respond to potential threats effectively	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. Name of the Author/s Name of the Publisher an									
1	Network security and Cryptography	B. Menezes	Cengage	1/e, 2010					
2	Cryptography And Network Security Principles And Practice	William Stallings	Pearson	5/e, 2011					

	Reference Books									
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year						
1	Cryptography and Network Security	B. A. Forouzan, D. Mukhopadhyay	McGraw Hill	3/e, 2015						
2	Network Security Essentials: Applications and Standards	William Stallings	Prentice Hall.	4/e, 2011						
3	Information System Security	Nina Godbole	Wiley	2/e, 2017						

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/106/106106129/				
2	https://nptel.ac.in/courses/106106199				

EMBEDDED SYSTEMS

(Common to CS/CM/AM)

Course Code	PECST746	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To provide a strong foundation in embedded systems, including the architecture, components, and design principles.
- **2.** To equip learners with the skills needed to design, develop, and integrate embedded systems using microcontrollers, especially 8051.

Module No.	Syllabus Description	Contact Hours		
	Introduction to Embedded Systems:-			
	Definition of Embedded System, Embedded Systems Vs General Computing			
	Systems, History, Classification, and, Major application areas of Embedded			
1	Systems, Purpose of Embedded Systems; Typical system - Core of the	9		
	Embedded System, Memory, Sensors and Actuators, Communication			
	Interface, Embedded Firmware, Other System components; Characteristics			
	and Quality attributes of Embedded Systems.			
	Designing with 8051:-			
	Factors to be Considered in Selecting a Controller, Why 8051			
	Microcontroller, Designing with 8051, The 8052 Microcontroller, 8051/52			
2	Variants; Different Addressing Modes Supported by 8051; The 8051	9		
	Instruction Set; Fundamental Issues in Hardware Software Co-Design;			
	Computational Models in Embedded Design; Introduction to Unified			
	Modelling Language (UML); Hardware Software Trade-offs.			
	Design and Development :-			
	Hardware Design and Development - VLSI and Integrated Circuit Design,			
3	Recap of Electronic Design Automation (EDA) Tools, The PCB Layout	9		
	Design, Printed Circuit Board (PCB) Fabrication; Firmware Design and			

	Development - Embedded Firmware Design, Embedded Firmware					
	Development Languages, Programming					
	in Embedded C.					
	Integration and Testing of Embedded Hardware and Firmware :-					
	Integration of Hardware and Firmware, Boards Bring up, The Embedded					
	System Development Environment - The Integrated Development					
4	Environment (IDE), Types of files generated on CrossCompilation,	9				
	Disassembler/Decompiler, Simulators, Emulators and Debugging, Target					
	Hardware Debugging, Boundary Scan.					

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A Part B		Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each of which 1 question should be answered.		60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the core components, characteristics, and applications of embedded systems, and their difference from general computing systems	К2
CO2	Apply knowledge of the 8051 microcontroller, its architecture, instruction set, and addressing modes, to design and develop embedded systems.	К3
CO3	Develop embedded firmware using appropriate languages, and understand the key concepts in hardware-software co-design.	К3
CO4	Use the integration of embedded hardware and firmware, and utilize tools for system testing and validation	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

	Text Books						
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year			
1	Introduction to Embedded Systems	Shibu K V	McGraw Hill	2/e, 2017			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Embedded Systems Architecture, Programming and Design	Raj Kamal	McGraw Hill	3/e, 2017				
2	Embedded Systems Design- A Unified Hardware/Software Introduction	Frank Vahid, Tony Givargis	Wiley	1/e, 2006				
3	Embedded Systems	Lyla B Das	Pearson					

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://nptel.ac.in/courses/108102045					

BLOCKCHAIN AND CRYPTOCURRENCIES

Course Code	PECST747	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCST604	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of blockchain architecture, elements, types (public, private, consortium), and industry applications.
- **2.** To help the learners to assess strengths and weaknesses of various blockchain consensus mechanisms (e.g., Proof of Work, Proof of Stake, Practical Byzantine Fault Tolerance).
- **3.** To enable learners to use blockchain real-world applications in government, healthcare, finance, and supply chain management, identifying implementation opportunities and challenges.

Module No.	Syllabus Description				
1	Blockchain Fundamentals Introduction, Blockchain Definition, Deciphering the Blockchain, Features and challenges of Blockchain, Applications in Blockchain, Decentralisation, Distributed Ledger Technology, Blockchain variants.	7			
2	Cryptography in Blockchain and Consensus Mechanisms Concept of Hashing, Creating a Transaction Hash, Merkle Trees - Importance of Merkle tree, Chaining of Blocks, Building the Network, Accessing the network, Types of Wallets. Need for Consensus, Two Generals' Problem, Byzantine Generals' Problem, Byzantine Fault Tolerance (BFT), Practical Byzantine Fault Tolerance (PBFT)- working, Paxos and Raft Algorithms.	9			
3	Cryptocurrencies - Bitcoin and Ethereum Bitcoin: Components, Nodes in Bitcoin network, Transactions and memory	10			

	pools, Proof of Work-Mining Cryptocurrencies, Hard and Soft Forks, Tracking Bitcoins-Unspent Transaction Outputs. Ethereum: Transition from Bitcoin to Ethereum, Concept of Ethereum World Computer, Ethereum Virtual Machine, Ethereum Network, Transition from PoW to PoS- Working of PoS, Smart Contracts in Ethereum, Decentralised Applications in Ethereum, Tools used in Ethereum.	
4	Blockchain Ethereum Platform using Solidity and Use Cases in Blockchain: Solidity Language - Remix IDE, Structure of a Smart Contract Program, Modifiers, Events, Functions, Inheritance, External Libraries, Error Handling. Permissioned Blockchains, Introduction to Hyperledger Foundation, Hyperledger Distributed Ledger frameworks, Hyperledger Fabric. Use Cases in Blockchain - Finance, Education, Government, Healthcare and Supply Chain Management.	10

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Explain the fundamental concepts of Blockchain technology.	K2			
CO2	Illustrate the cryptographic building blocks of Blockchain technology and understand the consensus mechanisms.	K2			
CO3	Explain the concepts of cryptocurrency bitcoin, mining processes, and wallet management.	K2			
CO4	Use the concepts of Ethereum platform and understand the use cases of blockchain technology	К3			
CO5	Develop skills in designing and deploying simple applications using Solidity language.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3		3							2
CO5	3	3	3	3	3							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Blockchain Technology: Algorithms and Applications	Asharaf S, Sivadas Neelima, Adarsh S, Franklin John	Wiley	1/e, 2023				
2	BlockchainTechnology	Chandramauoli Subrahmaniyan, Asha A George	Universities Press.	1/e ,2020				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Blockchain Technology - Concepts and Applications.	Kumar Saurabh, Ashutosh Saxena	Wiley	1/e, 2020				
2	Mastering Blockchain	Imran Bashir	Packt Publishing	1/e, 2020				
3	Solidity programming Essentials: A beginner's guide to build smart contracts for Ethereum and blockchain	Ritesh Modi	Packt Publishing	1/e, 2018.				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://youtube.com/playlist?list=PLrKK422S1aMma8lDA2JJjEUpC2ycuApuC&si=1OXTYDEZ4 A5M8M4Q					
2	https://youtube.com/playlist?list=PLHRLZtgrF2jl8yqucJsMFqh5XpRLTgCI4					
3	https://youtube.com/playlist?list=PL6gx4Cwl9DGBrtymuJUiv9Lq5CAYpN8Gl					
4	https://youtube.com/playlist?list=PLWUCKsxdKl0oksYr6IG_wRsaSUySQC0ck					

REAL TIME SYSTEMS

(Common to CS/CM/CA/AM)

Course Code	PECST748	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST402, PCCST403	Course Type	Theory

Course Objectives:

- 1. To enable the learners to familiarize with the concepts of Real Time systems
- 2. To teach different task scheduling algorithms in uniprocessor and multiprocessor environments.
- 3. To learn the features of real-time communications, real-time databases and real time OS.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Real-Time systems: Basic concepts, applications of Real-Time systems, basic model of Real-Time systems, characteristics of Real-Time systems, types of Real-Time systems: hard, firm, soft, timing constraints, modelling timing constraints.	6
2	Real-Time task scheduling: Basic concepts, clock driven scheduling, table driven scheduling, cyclic, schedulers, hybrid schedulers, event driven scheduling, EDF Scheduling, RMA, DMA, resource sharing among RT tasks, Priority inversion, Priority Inheritance Protocol, Highest Locker Protocol, Priority Ceiling Protocol, Scheduling Real-Time tasks in multiprocessor and distributed systems, Fault tolerant scheduling of tasks, clocks in distributed Real-Time systems.	12
3	Commercial Real-Time Operating Systems: Time services, Features of real-time operating systems, UNIX and Windows as RTOS, POSIX, PSOS, VRTX, QNX, RT Linux, Lynx, other RTOS, benchmarking RT OS, Real-Time OS: OS services, I/O subsystem, Network OS.	8
4	RT communications: QoS framework, models, Real-Time Communication in a LAN, IEEE 802.4, RETHER, Communication over Packet Switched Networks, Routing algorithms, RSVP, rate control; RT databases - Applications, characteristics of temporal data, Concurrency control, Commercial RT databases, Special topics in Real-Time systems.	10

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	60
(0.2.24	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the various Real Time applications, services, design considerations and architectures	К2
CO2	Develop efficient algorithms for real-time task scheduling in uniprocessor and multiprocessor environments	К3
СОЗ	Identify the limitations of a non real-time operating system in running a real-time application	К2
CO4	Identify and address the important issues in real-time communications	K2
CO5	Understand the concepts of use real-time databases	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	2									3
CO4	3	3	2									3
CO5	3	3	2									3

	Text Books							
Sl. No Title of the Book Name of the Author/s Publisher and Y								
1	Real-Time Systems: Theory and Practice	Rajib Mall	Pearson Education,	1/e, 2007				
2	Real-Time Systems	Jane W. S. Liu	Pearson Education,	3/e, 2009				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Real-Time Systems Design and Analysis, Wiley	Philip A. Laplante, Seppo J. Ovaska	Wiley	1/e, 2012			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1, 2, 3, 4	https://onlinecourses.nptel.ac.in/noc22_cs104/preview					

APPROXIMATION ALGORITHMS

Course Code	PECST749	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	-	Course Type	Theory

Course Objectives:

- 1. To provide a deep understanding of approximation algorithms, including their design, analysis, and application to various optimization problems.
- 2. To equip the skills to evaluate and analyze the efficiency and effectiveness of approximation techniques. This includes understanding performance metrics, approximation ratios, and the theoretical limits of approximation algorithms, as well as applying these techniques to complex problems in network design, combinatorial optimization, and other areas.

Module No.	Syllabus Description	Contact Hours
	Basics of Approximation Algorithms - Introduction to approximation	
	algorithms, Performance guarantees: approximation ratio and factor, Examples of approximation problems. (Chapter 1)	
1	Greedy Algorithms - Introduction to greedy algorithms, Set cover problem, Vertex cover problem. (Chapter 2)	9
	Local Search Algorithms - Local search techniques, k-Median and k-Center problems, Analysis of local search algorithms. (Chapter 3)	
2	Linear Programming Relaxation - Introduction to linear programming (LP), LP relaxation of combinatorial problems, Primal-dual method. (Chapter 4) Rounding Techniques - Randomized rounding, Deterministic rounding, Applications to various problems. (Chapter 5) Integer Programming and Cutting Planes - Integer programming formulation, Cutting plane methods, Applications in network design. (Chapter 6)	9
3	Semi-Definite Programming - Introduction to semi-definite programming (SDP), Goemans-Williamson algorithm for MAX-CUT, Other applications of SDP. (Chapter 8) Approximation Schemes - Polynomial-time approximation schemes (PTAS),	9

	Fully polynomial-time approximation schemes (FPTAS), Examples:	
	knapsack problem, Euclidean TSP. (Chapter 9)	
	Inapproximability Results - Introduction to inapproximability, Reductions and hardness of approximation, PCP theorem and its implications. (Chapter	
4	10)	9
	Network Design Problems - Steiner tree problem, Traveling Salesman	
	Problem (TSP), Multicommodity flow problem. (Chapter 7)	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate a foundational understanding of approximation algorithms, including performance guarantees, approximation ratios, and common examples of approximation problems.	К3
CO2	Illustrate the principles of greedy algorithms and apply them to solve classic problems such as the set cover and vertex cover problems, understanding their efficiency and limitations.	К3
CO3	Show proficiency in local search algorithms and linear programming relaxation methods, including the primal-dual method, and apply these techniques to solve combinatorial optimization problems.	К3
CO4	Understand and implement rounding techniques, both randomized and deterministic, and learn the basics of semi-definite programming (SDP), including algorithms like Goemans-Williamson for the MAX-CUT problem.	К3
CO5	Demonstrate polynomial-time approximation schemes (PTAS) and fully polynomial-time approximation schemes (FPTAS), and explore inapproximability results, including reductions, hardness of approximation, and the PCP theorem.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								2
CO2	3	3	3	3								2
CO3	3	3	3	3								2
CO4	3	3	3	3								2
CO5	3	3	3	3								2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Approximation Algorithms	Vijay V. Vazirani	Springer Nature (SIE)	2/e, 2013				

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	The design of approximation	David Williamson and	Cambridge	1/e, 2011		
1	algorithms	David Shmoys	University Press	1/6, 2011		
2	Dandamized Algorithms	Rajeev Motwani and	Cambridge	1/e, 2004		
2	Randomized Algorithms	Prabhakar Raghavan	University Press	1/6, 2004		
	Probability and Computing:					
3	Randomization and Probabilistic	Michael Mitzenmacher and	Cambridge	3/e, 2017		
3	Techniques in Algorithms and Data	Eli Upfal	University Press	3/6, 2017		
	Analysis					
4	Introduction to Algorithms	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein	The MIT Press	4/e, 2023		
5	The Probabilistic Method	Noga Alon and Joel H. Spencer	Wiley-Blackwell	4/e, 2016		
6	Computational Complexity: A	Sanjeev Arora and Boaz	Cambridge	1/e, 2019		
	Modern Approach	Barak	University Press	1/6, 2017		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/106105471					
2	https://nptel.ac.in/courses/106105471					
3	https://nptel.ac.in/courses/106105471					
4	https://nptel.ac.in/courses/106105471					

COMPUTER VISION

Course Code	PECST745	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To cover the basics of image formation, key computer vision concepts, methods, techniques, pattern recognition, and various problems in designing computer vision and object recognition systems.
- **2.** To enable the learners to understand the fundamentals of computer vision and machine learning models to develop applications in computer vision.

Module No.	Syllabus Description			
1	Fundamentals in Computer Vision:- Camera Calibration- Pinhole camera model, Geometric Image Features - Curves, Surfaces, Analytical Image Features - Elements of Analytical Euclidean Geometry, Geometric Camera Parameters, Stereopsis - Binocular Camera Geometry, Epipolar Constraint, Binocular Reconstruction, Local Methods for Binocular Fusion, Global Methods for Binocular Fusion.	9		
2	Features and Filters:- Linear Filters- Linear Filters and Convolution, Shift Invariant Linear Systems. Estimating Derivatives with Finite Differences, Noise, Edges and Gradient-based Edge Detectors Image Gradients - Computing the Image Gradient, Gradient Based Edge and Corner Detection. Filters as Templates - Normalized Correlation and Finding Patterns.	9		

	Machine Learning for Computer Vision :-	
	Machine Learning - Introduction, Dataset for Machine Perception- Labelled	
	and Unlabelled Data, Basics of Classification and Clustering, Multi-Class	
	Perspective.	
3	Machine Learning for Computer Vision -Machine Learning -Deep Learning Use Cases.	9
	Machine Learning Models for Vision - Image Vision-Pretrained Model,	
	Transfer Learning, Fine-Tuning, Convolutional Networks, Convolutional	
	Filters, Stacking Convolutional Layers, Pooling Layers - AlexNet, VGG19, ,	
	Modular architecture - ResNet, Neural Architecture Search Design - NASNet	
	Segmentation and Object detection :-	
	Segmentation Using Clustering Methods - Human vision- Grouping and	
	Gestalt, Applications- Shot Boundary Detection, Background Subtraction,	
	Image Segmentation by Clustering Pixels- Simple Clustering Methods,	
4	Clustering and Segmentation by K-means	9
-	Object detection - YOLO, Segmentation-Mask R-CNN and Instance	
	Segmentation, U-Net and Semantic Segmentation, Model Quality Metrics	
	A case study to compare performance of various models on a suitable	
	dataset.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the basic concepts and terminologies like Camera Calibration, Stereopsis in computer vision	K2
CO2	Apply filters for feature extraction and for finding patterns.	К3
CO3	Build different machine learning models for computer vision	К3
CO4	Implement segmentation and object detection models	К3
CO5	Analyze different machine learning models for segmentation/object detection.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3	3								3
CO5	3	3	3	3	3							3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer vision: A modern approach	Forsyth, David, and Jean Ponce	Prentice hall	2011		
2	Emerging topics in computer vision	Medioni, Gerard and Sing Bing Kang	РНІ	2004		
3	Practical Machine Learning for Computer Vision	Valliappa Lakshmanan, Martin Görner, Ryan Gillard	O'Reilly Media	2021		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer vision: algorithms and applications	Szeliski, Richard	Springer Science & Business Media	2010		
2	Image Segmentation: Principles, Techniques, and Applications	Tao Lei, Asoke K. Nandi	John Wiley & Sons	2022		
3	Deep Learning in Computer Vision Principles and Applications	Ali Ismail Awad, Mahmoud Hassaballah	CRC Press	2020		

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	Computer Vision and Image Processing - Fundamentals and Applications by Prof. M. K. Bhuyan at IIT Guwahati https://onlinecourses.nptel.ac.in/noc23_ee39/preview			
2	Computer Vision by Prof. Jayanta Mukhopadhyay at IIT Kharagpur			
3	https://onlinecourses.nptel.ac.in/noc19_cs58/preview			
4	Deep Learning for Computer Vision by Prof. Vineeth N Balasubramanian at IIT Hyderabad https://onlinecourses.nptel.ac.in/noc21_cs93/preview			
	COVID-Net Open Source Initiative - COVIDx CT-3 Dataset https://www.kaggle.com/datasets/hgunraj/covidxct			

SEMESTER S7
TOPICS IN THEORETICAL COMPUTER SCIENCE

Course Code	PECST795	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST303 PCCST502	Course Type	Theory

Course Objectives:

- 1. To understand and apply spectral graph theory techniques to analyze and solve complex graph problems, such as community detection and network design, through detailed study and hands-on assignments.
- 2. To develop and evaluate LP- and SDP-based approximation algorithms for NP-hard problems, including real-world applications like scheduling and optimization, by implementing these algorithms and assessing their performance in practical scenarios

Module No.	Syllabus Description	Contact Hours				
	Spectral Graph Theory - Introduction to Spectral Graph Theory, Graph					
	Laplacians: Definition and Properties, Eigenvalues and Eigenvectors of					
	Laplacian matrices, Cheeger's Inequality, Graph Partitioning.					
	Assignments:					
	1. Implement Cheeger's inequality for a set of sample graphs. Compare					
	the theoretical results with empirical data to analyze the effectiveness					
	of different partitioning algorithms. Use a set of sample graphs such					
	as Erdős-Rényi Random Graphs, Barabási-Albert Model: Known for					
1	scale-free properties, and Regular Graphs. Compare theoretical	9				
	results with empirical data using different partitioning algorithms					
	such as Spectral Clustering - Uses the eigenvectors of the Laplacian					
	matrix, K-means Clustering - Applied to spectral embeddings of the					
	graph, Normalized Cut - Minimizes the normalized cut criterion.					
	Measure how close the empirical conductance is to the theoretical					
	lower bound provided by Cheeger's inequality. Analyze which					
	algorithms produce cuts with conductance values closer to the					

	theoretical bounds.	
	Real-world Application: Apply Cheeger's inequality to social	
	network analysis to detect community structures.	
	2. Analyze the properties of the Laplacian matrix of a given graph	
	(Erdős-Rényi Random Graphs). Compute its eigenvalues and	
	eigenvectors and discuss the implications for graph partitioning.	
	Examine the use of graph Laplacians in network community	
	detection.	
	Spectral Clustering - Introduction to Clustering and Spectral Clustering,	
	Normalized Cut, Eigenvalue Techniques for Clustering, Spectral Clustering	
	Algorithm, Applications of Spectral Clustering.	
	Assignment:	
	1. Implement a spectral clustering algorithm and apply it to a real-world	
	dataset (Iris dataset). After running the spectral clustering algorithm,	
	evaluate the results using metrics such as Silhouette Score and	
	Adjusted Rand Index (ARI). Plot the data points colored by their	
2	cluster assignments to visually inspect the clustering.	9
_	Compare spectral clustering with other clustering techniques (e.g., k-	
	means, hierarchical clustering) on the three types of datasets -	
	Synthetic Data, Real-World Data (Iris Dataset), and High-	
	Dimensional Data (Text Data (Use TF-IDF features)). Discuss the	
	advantages and limitations of spectral clustering in different	
	scenarios.	
	Real-world Application: Use clustering results for anomaly detection	
	in network security.	
	Expanders - Introduction to Expander Graphs, Properties and Construction of	
	Expanders, edge-expanders, vertex-expanders, spectral-expanders, Expander	
	Mixing Lemma, Random walks on expanders graphs, Applications of	
	Expander Graphs: Error-Correcting Codes.	
	Assignments:	
	1. Study the construction and properties of expander graphs such as	
3	Erdős-Rényi graphs, Ramanujan graphs and Cayley graphs.	9
	Implement algorithms for generating expander graphs and analyze	
	their properties based on spectral gap and expansion property.	
	2. Apply expander graphs to error-correcting codes. Design and test	
	codes based on expanders, and evaluate their performance in terms of	
	error correction capabilities. Simulate a communication channel with	
	•	

	added noise and measure the performance of the expander code in	
	correcting errors. Evaluate the BER, code rate, and error correction	
	capability by comparing the number of errors corrected versus the	
	total number of errors introduced.	
	LP- and SDP-based Approximation Algorithms for NP-Hard Problems -	
	Linear Programming (LP) Relaxations and their Use in Approximation:	
	Vertex Cover and Set Cover, Semidefinite Programming (SDP) and its	
	Applications: Max-Cut Problem.	
	Assignments:	
	1. Implement and evaluate LP relaxations for vertex cover and set cover	
	problems (use Erdős-Rényi Graphs). Compare the results with exact	
	solutions and analyze the quality of the approximations.	
	2. Develop and test approximation algorithms for Max-cut problem	
4	using SDP relaxations. Assess the performance and efficiency of your	9
	algorithms on various datasets. To assess the performance and	
	efficiency of the SDP-based Max-Cut approximation, test the	
	algorithm on various types of graphs, including: Erdős-Rényi Graphs,	
	Barabási-Albert Graphs, and Real-world Graphs. Compare the cut	
	values obtained from the SDP relaxation and rounding with known or	
	exact solutions if available. For large graphs, use heuristics or bounds	
	for comparison. Measure the time taken to solve the SDP relaxation	
	and perform the rounding. This includes the time for solving the SDP	
	problem and the time for eigen-decomposition.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Assignment evaluation pattern:

- Theoretical Understanding (25%) Evaluate the clarity and accuracy with which theoretical concepts such as spectral graph theory, clustering algorithms, expanders, and approximation methods are explained and applied.
- Application of Theory (25%) Assess how well the theoretical methods are applied to address
 assignment problems. Check if solutions are relevant, accurate, and demonstrate a good grasp
 of the theoretical background.
- Depth of Analysis (25%) Analyze the depth of the problem analysis, including how well the assignment tackles complex aspects and nuances of the problem.
- Interpretation of Results (25%) Evaluate the meaningfulness and relevance of the conclusions drawn from the analysis. Check if the results provide significant insights into the problem.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand and explain fundamental concepts of Spectral Graph Theory, including Laplacian matrices and their applications.	K2
CO2	Apply spectral clustering techniques to real-world data and evaluate clustering performance using appropriate metrics.	К5
CO3	Construct and analyze expander graphs, and assess their applications in network design and error-correcting codes.	K4
CO4	Develop and implement LP- and SDP-based approximation algorithms for solving NP-Hard problems, and compare their performance.	K5
CO5	Demonstrate the ability to solve complex theoretical problems using advanced algorithms and techniques covered in the course.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3		3							3
CO4	3	3	3	3								3
CO5	3	3	3	3	3							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Spectral Graph Theory (CBMS Regional Conference Series)	Fan R. K. Chung	American Mathematical Society	1/e, 1997
2	Algebraic Graph Theory	Norman Biggs	Cambridge India	2/e, 2016
3	Approximation Algorithms	Vijay V. Vazirani	Springer Nature	2/e, 2013
4	Convex Optimization	Stephen Boyd, Lieven Vandenberghe	Cambridge University Press	1/e, 2004

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Algebraic Graph Theory	C. Godsil, G.F. Royle	Springer Nature	1/e, 2009					
2	The design of approximation algorithms	David Williamson, David Shmoys	Cambridge University Press	1/e, 2011					
3	Randomized Algorithms	Rajeev Motwani, Prabhakar Raghavan	Cambridge University Press	1/e, 2004					
4	Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis	Michael Mitzenmacher, Eli Upfal	Cambridge University Press	3/e, 2017					
5	Graph Theory and Complex Networks: An Introduction	Maarten Van Steen	Maarten Van Steen	1/e, 2010					

Video Links (NPTEL, SWAYAM)				
No.	No. Link ID			
1	https://archive.nptel.ac.in/courses/128/106/128106001/			

ADVANCED COMPUTER NETWORKS

Course Code	PECST751	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To give a comprehensive understanding of advanced networking concepts, including MPLS, VPNs, Data Center Networks, and Software-Defined Networking (SDN).
- **2.** To impart the skills necessary to analyze, design, and evaluate complex networking architectures, addressing the challenges and emerging trends.

Module No.	Syllabus Description	Contact Hours
	Review of Computer Networking Fundamentals - OSI and TCP/IP Models,	
	Layers and Protocols, IP Addressing and Subnetting, Routing Protocols -	
	RIP, OSPF, BGP;	
	QoS in IP networks - Random Early Detection, Protocols for QoS support -	
1	RSVP, RTP, Multiprotocol Label Switching (MPLS): Overview and Use	8
	Cases; Network Security Basics - Firewalls, ACLs, and NAT; Working of	
	NAT; Virtual Private Networks (VPNs) - Types and Architectures;	
	Overview of Data Center Networks: Key Components and Topologies;	
	DLL switching - Overview, VLANs, Inter-VLAN Routing; Spanning Tree	
	Protocol (STP) - IEEE 802.1D, Rapid Spanning Tree Protocol (RSTP) -	
	IEEE 802.1w, Multiple Spanning Tree Protocol (MSTP) - IEEE 802.1s, STP	
2	Enhancements - BPDU Guard, Root Guard, and Loop Guard;	9
	Data Center Network Architectures - Traditional vs. Modern Data Center	
	Designs (Spine-Leaf, Clos Networks), Ethernet Fabrics and TRILL;	
	Data Center Design Considerations - Scalability, Redundancy, and Latency.	
	SDN Architecture and Components - Control Plane, Data Plane, and	
3	Application Plane; OpenFlow Protocol and its Role in SDN; SDN	9
	Controllers - Ryu, OpenDaylight, and ONOS; SDN Use Cases - Traffic	

	Engineering, Network Function Virtualization (NFV) - NFV Concepts,	
	Virtualizing Network Functions and Services; NFV Infrastructure (NFVI)	
	and Management (MANO); Service Function Chaining (SFC); NFV in	
	Telecom Networks.	
	Data Center Interconnect (DCI) - Technologies for Data Center	
	Interconnection(VPLS, OTV, and VXLAN), DCI Design and Deployment	
	Considerations; Intent-Based Networking (IBN) - Introduction to Intent-	
	Based Networking; Content Distribution on the Internet - Architectures for	
4	Information-Centric Networking; Content Naming, Routing and Caching,	10
	Security in Named Data Networking; Network Automation and	
	Orchestration; Automation Tools - Ansible, Terraform; Orchestration	
	Frameworks - Kubernetes.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome		
CO1	Explain and critically analyze advanced networking protocols and technologies, including MPLS, VPNs, and SDN, and their applications	К3	
COI	in modern networks	KJ	
CO2	Demonstrate an understanding of data center network architectures, including the design considerations and protocols that ensure scalability, redundancy, and efficiency.	К3	
CO3	Use Software-Defined Networking (SDN) and Network Function Virtualization (NFV) to automate and optimize network operations.	К3	
CO4	Explain emerging trends such as Intent-Based Networking (IBN) and network automation, applying this knowledge to modernize and innovate networking solutions.	К2	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2								3
CO2	3	3	3	2								3
CO3	3	3	3	2								3
CO4	3	2	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Networking: A Top-Down Approach	James F. Kurose, Keith W. Ross	Pearson	8/e, 2022		
2	Data Center Virtualization Fundamentals: Understanding Techniques and Designs for Highly Efficient Data Centers with Cisco Nexus, UCS, MDS, and Beyond	Gustavo A. A. Santana	CISCO Press	1/e, 2013		
3	MPLS and VPN Architectures	Jim Guichard, Ivan Pepelnjak, Jeff Apcar	CISCO Press	1/e, 2000		
4	High-speed networks and Internet: Performance and Quality of Service	William Stallings	Pearson	2/e, 2002		
5	Software Defined Networks: A Comprehensive Approach	Paul Goransson, Chuck Black, Timothy Culver	Morgan Kaufman	2/e, 2016		
6	Information-Centric Networking (ICN): Content-Centric Networking (CCNx) and Named Data Networking (NDN) Terminology	B. Wissingh, C. Wood, A. Afanasyev, L. Zhang, D. Oran, C. Tschudin	RFC 8793	2020		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Cloud Networking: Understanding Cloud-based Data Centre Networks	Gary Lee	Morgan Kaufman	1/e, 2014			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/106/106106243/					

SEMESTER S7

RESPONSIBLE ARTIFICIAL INTELLIGENCE

Course Code	PECST752	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To impart the ideas of fairness, accountability, bias, and privacy as fundamental aspects of responsible AI.
- **2.** To teach the principles of interpretability techniques including simplification, visualization, intrinsic interpretable methods, and post hoc interpretability for AI models.
- **3.** To give the learner understanding of the ethical principles guiding AI development, along with privacy concerns and security challenges associated with AI deployment.

Module No.	Syllabus Description			
	Foundations of Responsible AI :-			
	Introduction to Responsible AI- Overview of AI and its societal impact;			
1	Fairness and Bias - Sources of Biases, Exploratory data analysis, limitation	7		
	of a dataset, Preprocessing, inprocessing and postprocessing to remove bias.			
	Interpretability and explainability:-			
	Interpretability - Interpretability through simplification and visualization,			
	Intrinsic interpretable methods, Post Hoc interpretability, Explainability			
2	through causality, Model agnostic Interpretation.	10		
	Interpretability Tools - SHAP (SHapley Additive exPlanation), LIME(Local			
	Interpretable Model-agnostic Explanations)			
	Ethics, Privacy and Security:-			
	Ethics and Accountability -Auditing AI models, fairness assessment,			
3	Principles for ethical practices.	10		
	Privacy preservation - Attack models, Privacy-preserving Learning,			
	Differential privacy- Working, The Laplace Mechanism, Introduction to			

	Federated learning.	
	Security - Security in AI Systems, Strategies for securing AI systems and	
	protecting against adversarial attacks	
	Future of Responsible AI and Case Studies : -	
	Future of Responsible AI - Emerging trends and technologies in AI ethics	
4	and responsibility.	9
	Case Studies - Recommendation systems, Medical diagnosis, Computer	
	Vision, Natural Language Processing.	

Continuous Internal Evaluation Marks (CIE):

Attenda	nce	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5		15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome		
CO1	Identify and describe key aspects of responsible AI such as fairness, accountability, bias, and privacy.	K2	
CO2	Describe AI models for fairness and ethical integrity.	K2	
CO3	Understand interpretability techniques such as simplification, visualization, intrinsic interpretable methods, and post hoc interpretability.	К2	
CO4	Comprehend the ethical principles, privacy concerns, and security challenges involved in AI development and deployment.	К3	
CO5	Understand responsible AI solutions for practical applications, balancing ethical considerations with model performance.	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way	Virginia Dignum	Springer Nature	1/e, 2019					
2	Interpretable Machine Learning	Christoph Molnar	Lulu	1/e, 2020					

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	ResponsibleAI Implementing Ethical and Unbiased Algorithms	Sray Agarwal, Shashin Mishra	Springer Nature	1/e, 2021						

Video Links (NPTEL, SWAYAM)							
Module No. Link ID							
1	https://youtu.be/3-xhMXeYIcg?si=x8PXrnk0TabaWxQV						
2	https://youtu.be/sURHNhBMnFo?si=Uj0iellJs3oLOmDL [SHAP and LIME] https://c3.ai/glossary/data-science/lime-local-interpretable-model-agnostic-explanations/ https://shap.readthedocs.io/en/latest/ https://www.kaggle.com/code/bextuychiev/model-explainability-with-shap-only-guide-u-need						
3	https://www.youtube.com/live/DA7ldX6OIG4?si=Dk4nW1R1zi_UMG_4						
4	https://youtu.be/XlYhKwRLerc?si=IeU7C0BLhwn9Pvmi Case Studies https://www.kaggle.com/code/teesoong/explainable-ai-on-a-nlp-lstm-model-with-lime https://www.kaggle.com/code/victorcampelo/using-lime-to-explaining-the-preditions-from-ml						

FUZZY SYSTEMS

(Common to CS/CA)

Course Code	PECST753	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the concepts of fuzziness and its use in building better solutions to problems.
- **2.** To understand the basic concepts of fuzzy sets, fuzzy relations, fuzzy logic and building of fuzzy approximation-based solutions.

Modu le No.	Syllabus Description						
1	Basic Fuzzy Set Theory:- Introduction - Uncertainty, Imprecision and Vagueness. Crisp vs Fuzzy sets. Representation of Fuzzy sets. Membership Functions — Types, Basic operations - dilation, concentration, normalization, Linguistic hedges. Properties of fuzzy set - Level Sets - Alpha cut representation. Operations on fuzzy sets- fuzzy complement, fuzzy intersection, fuzzy union, aggregation operations	9					
2	Fuzzy Relations:- Operations on Fuzzy relations: union, intersection, complement, cartesian product. Fuzzy composition- Max- min, Max – product. Extension Principle-Fuzzy arithmetic – fuzzy numbers, arithmetic operations on fuzzy numbers. Fuzzy Reasoning – Generalized Modus Ponens (GMP) and Generalized Modus Tollens (GMT).	9					

	Fuzzification and Defuzzification Methods:-			
	Fuzzy inference - Zadeh rule, Mamdani rule. Development of membership			
	Functions - Intuition, Inference, Rank ordering, Inductive reasoning.	9		
3	Defuzzification to Scalars - Max membership principle, Centroid method,			
	Weighted average method, Mean max membership, Center of sums, Center of			
	largest area, First (or last) of maxima.			
	Fuzzy Inference Systems :-			
	Approximate Reasoning, Fuzzy (Rule-Based) Systems – Multiple conjunctive			
4	antecedents, Multiple disjunctive antecedents, Aggregation of fuzzy rules,			
	Graphical Techniques of Inference. Fuzzy Controllers -Mamdani FIS, Larsen			
	Model.			

Course Assessment Method (CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B			
• 2 Questions from each	Each question carries 9 marks.			
module.	• Two questions will be given from each module,			
• Total of 8 Questions,	out of which 1 question should be answered.	<i>(</i> 0		
each carrying 3 marks	• Each question can have a maximum of 3	60		
	subdivisions.			
(8x3 =24 marks)	(4x9 = 36 marks)			

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain fuzzy logic based problem solving	K2
CO2	Summarize the concepts of crisp sets, crisp relations, crisp logic with fuzzy sets, fuzzy relations and fuzzy logic	К3
CO3	Develop fuzzy systems by selecting appropriate membership functions, fuzzification and defuzzification methods	К3
CO4	Develop solutions using graphical and rule-based methods	К3
CO5	Make use of fuzzy logic inference to solve real world problems	К3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1									2
CO2	3	1	1									2
CO3	3	3	2	1								2
CO4	3	3	2	1								2
CO5	3	3	2	2	1							2

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Fuzzy Logic with Engineering Applications	Timothy J. Ross	John Wiley and Sons	3/e, 2010						
2	Fuzzy Sets and Fuzzy Logic: Theory and Applications	George J. Klir and Bo Yuan	Pearson	1/e, 2015						

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems	Guanrong Chen, Trung Tat Pham	CRC Press	1/e, 2019	
2	Discrete Mathematics and Its Applications with Combinatorics and GraphTheory	Kenneth H. Rosen	MGH	7/e, 2011	
3	Discrete Mathematical Structures with Applications to Computer Science	Trembly J.P, Manohar R	TataMc Graw Hill	1/e, 2003	
4	Discrete Mathematical Structures	Bernard Kolman, Robert C. Busby, Sharan Cutler Ross,	Pearson	1/e, 2003	

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/108104157						

DIGITAL FORENSICS

(Common with CS/CM/CA/CD/CR/AI/AM/AD)

Course Code	PECST754	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To impart the fundamental knowledge on incident management and reporting.
- **2.** To provide a good understanding on devices, operating systems, network and mobile forensics.

Module No.	Syllabus Description			
	Introduction to Digital Forensics - Principles in Digital Forensics; Stages in			
	Digital Forensics Investigation- Forensics Imaging & Cloning, Concept of			
	Chain of Custody, Digital Evidence Handling at Crime Scene,			
	Collection/Acquisition and Preservation of Digital Evidence, Processing &			
	Analysis, Compilation of Findings & Reporting; Expansion of Stages in			
	Digital Investigation.			
	Types of Storage Media - Hard Disk Drives (HDD), Solid State Drives			
	(SSD), USB Flash Drives, Optical Discs, Memory Cards, Cloud Storage,			
	Drive Geometry, Cylinders, Heads, and Sectors, Logical Block Addressing			
1	(LBA); Expansion of Types of Storage Medium.	10		
	Overview of File Systems - Introduction to File Systems, File Systems in			
	Digital Forensics, FAT (File Allocation Table), Structure and Characteristics			
	: FAT12, FAT16, FAT32, NTFS (New Technology File System), Structure			
	and Characteristics, Master File Table (MFT), EXT (Extended File System),			
	EXT2, EXT3, EXT4, Journaling in EXT3 and EXT4, HFS (Hierarchical File			
	System), HFS and HFS+ Structure and Characteristics, Metadata and			
	Attributes			
	Tools suggested: Hex Viewer, FTK Imager, OS Forensics			

	Windows Forensics - OS Artefacts, Registry Analysis, Analysis of USB	
	Connections, Event Logs, Applications, Slack Space, Overwritten Files, Data	
	Recovery Techniques, Volatile and Non-Volatile Data, Hibernation file	
	analysis, Pagefile analysis, prefetch files, thumbnails, Timestamps, File	
	Signatures, File System Analysis Tools, Techniques for Recovering Deleted	
2	Files, File Carving; Memory Forensics - RAM dump and analysis; Linux	
	and MAC Forensics; Anti Forensics Methods - Steganography, Encryption,	
	Alternate Data Streams.	
	Tools suggested: Hex Viewer, FTK Imager, Autopsy, RegRipper, Volatility,	
	Dumpit	
	Mobile Forensics - Introduction to Mobile Forensics, Mobile Forensics	
	Fundamentals, Understanding Mobile Device Storage, Android, iOS,	
	Windows OS Artifacts, ADB (Android Debug Bridge), APK Files,	
	Techniques for Acquiring Data from Mobile Devices, Rooting, Jailbreaking.	
	Analysis of Application Files - Social Media Files, Understanding and	
3	Analyzing APK Files, Messages, Malware Analysis, Cloud Data in Mobile	9
	Forensics, Analyzing Backups and Cloud Data, Advanced Data Recovery	
	Techniques (Bypassing Encryption, Password Cracking), Challenges in	
	Mobile Forensics.	
	Tools suggested: MobileCheck, BlueStacks(Android Emulator), SQLite	
	Database viewer	
	Network Forensics - Introduction to Network Forensics, Overview of	
	Network Architectures and Protocols, Capturing and Analyzing Network	
	Traffic using Wireshark/Tcpdump, Log Analysis, Email and Web Forensics,	
	Email Header Analysis; Endpoint Security systems - Intrusion Detection	
4	Systems, Firewall, Router Forensics, NAS, Proxy, VPN; Public Key	8
	Infrastructure Systems; Digital Signature - Concepts of Public Key and	
	Private Key, Certification Authorities and Their Role, Creation and	
	Authentication of Digital Signature.	
	Tools Suggested: Wireshark, Apache Log Viewer	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Perform forensics analysis of hard disk, Network, and mobile phones.	К3		
CO2	Experiment with the network traffic dump.	К3		
CO3	Examine the analyse logs of the systems and identify the anomalies.	К3		
CO4	Plan an onsite triage in case of an incident.	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3		3							2
CO3	3	3	3		3							2
CO4	3	3	3		3							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Digital Forensics and Incident Response	Gerard Johansen	Packt	2/e, 2020			
2	Guide to Computer Forensics and Investigations	Bill Nelson, Amelia Phillips, Christopher Steuart	Cengage	6/e, 2020			
3	Practical Mobile Forensics	Rohit Tamma, Oleg Skulkin, Heather Mahalik, Satish Bommisetty	Packt	4/e, 2020			
4	Mobile Forensics - Advanced Investigative Strategies	Oleg Afonin, Vladimir Katalov	Packt	1/e, 2016			
5	Network Forensics : Tracking Hackers Through Cyberspace	Sherri Davidoff, Jonathan Ham	Pearson	1/e, 2013			
6	File system forensic analysis	Brian Carrier	Addison- Wesley	1/e, 2005			
7	Windows Forensics: The Field Guide for Corporate Computer Investigations	Chad Steel	Wiley	1/e, 2006			
8	Android Forensics: Investigation, Analysis and Mobile Security for Google Android	Andrew Hoog	Syngress	1/e, 2011			

	Video Links (NPTEL, SWAYAM)					
No.	Link ID					
1	https://onlinecourses.swayam2.ac.in/cec20_lb06/preview					
2	https://www.swgde.org/documents/published-by-committee/quality-standards/					
3	https://csrc.nist.gov/pubs/sp/800/101/r1/final					

SEMESTER S7

GAME THEORY AND MECHANISM DESIGN

Course Code	PECST753	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To equip students with a general purpose tool to analyze strategic behavior in multi-agent interaction
- 2. To discuss the mathematical details of analyzing and designing strategic interactions.

Module No.	Syllabus Description	Contact Hours
	Introduction to Game Theory - Competitive equilibrium, Rationality; Strategic Games - Dominance, Nash equilibrium, Maxmin strategies, elimination of dominated strategies, preservation of pure Nash equilibrium	
1	(PSNE), matrix games, relation between maxmin and PSNE in matrix games Mixed strategies, mixed strategy Nash equilibrium (MSNE), finding MSNE, MSNE characterization theorem, algorithm to find MSNE	8
2	Correlated equilibrium (CE) - Computing CE, extensive form games, subgame perfection, limitations of subgame perfect Nash equilibrium; Imperfect information extensive form games (IIEFG) - strategies in IIEFGs, equivalence of strategies in IIEFGs, perfect recall, Equilibrium in IIEFG; Game theory application - P2P file sharing; Bayesian games - strategy and utility in Bayesian games, equilibrium in Bayesian games.	11
3	Introduction to mechanism design - revelation principle, introduction and proof of Arrow's impossibility result, introduction to social choice setup; Introduction and proof of Gibbard-Satterthwaite theorem, domain restriction, median voter theorem; Task sharing domain, uniform rule, mechanism design with transfers, examples of quasi-linear preferences, Pareto optimality and Groves payments	9

4	Introduction to VCG mechanism, VCG in Combinatorial allocations, applications to Internet advertising, slot allocation and payments in position auctions, pros and cons of VCG mechanism; Affine maximizers, single object allocation, Myerson's lemma, optimal mechanism design; Single and multi-agent optimal mechanism design, examples of optimal mechanisms	U
---	---	---

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Differentiate between different types of games Identify various equilibria within games	К3			
CO2	Identify strategic interactions.	К3			
CO3	Describe the basic concepts of non-cooperative and cooperative games.	K2			
CO4	Apply the concepts in different game scenarios.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	An Introduction to Game Theory	Martin Osborne	Cambridge University Press	1/e, 2004				
2	Game Theory and Mechanism Design	Y. Narahari	World Scientific and IISc Press	1/e, 2013				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Game Theory 101: The Complete Textbook	William Spaniel	Self	1/e,				
2	Game Theory - An Introduction	Steven Tadelis	Princeton University Press	1/e, 2013				

	Video Links (NPTEL, SWAYAM)					
Module No. Link ID						
1	https://archive.nptel.ac.in/courses/106/101/106101237/					
2	https://www.masfoundations.org/					
3						
4						

HIGH PERFORMANCE COMPUTING

(Common to CS/CR/CM/CD/CA/AM/AD)

Course Code	PECST757	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Gain an understanding of the modern processor architectures.
- 2. To Give an introduction to parallel programming using OpenMP and MPI.

Module No.	Syllabus Description	Contact Hours
1	Modern processors: Stored-program computer architecture- General-purpose cache-based microprocessor architecture - Performance metrics and benchmarks -Moore's Law - Pipelining - Super scalarity - SIMD - Memory hierarchies - Cache , Cache mapping, Prefetch, Multicore processors - Multithreaded processors - Vector processors - Design principles - Maximum performance estimates - Programming for vector architectures.	9
2	Parallel computers - Taxonomy of parallel computing paradigms - Shared-memory computers - Cache coherence - UMA, ccNUMA, Distributed-memory computers - Hierarchical (hybrid) systems - Networks - Basic performance characteristics of networks, Buses, Switched and fattree networks - Mesh networks - Hybrids.	9
3	Shared-memory parallel programming with OpenMP:- Short introduction to OpenMP - Parallel execution - Data scoping - OpenMP worksharing for loops - Synchronization, Reductions, Loop scheduling, Tasking, Miscellaneous, Case study: OpenMP-parallel Jacobi algorithm	9

	Distributed-memory parallel programming with MPI:-	
	Message passing - A short introduction to MPI, A simple example,	
4	Messages and point-to-point communication, Collective communication,	
	Nonblocking point-to-point communication, Virtual topologies. Example-	9
	MPI parallelization of a Jacobi solver - MPI implementation - Performance	
	properties.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe parallel computing architectures supported by modern processors.	K2
CO2	Classify parallel computing paradigms and network topologies.	K2
CO3	Implement shared-memory parallel programming with OpenMP.	К3
CO4	Design and implement parallel algorithms using distributed-memory parallel programming with MPI	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										3
CO2	3	2										3
CO3	3	3	3	2								3
CO4	3	3	3	2								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to High Performance Computing for Scientists and Engineers	Georg Hager Gerhard Wellein	CRC Press	1/e, 2011			
2	High Performance Computing: Modern Systems and Practices	Thomas Sterling, Maciej Brodowicz, Matthew Anderson	Morgan Kaufmann	1/e, 2017			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Parallel and High-Performance Computing	Robert Robey Yuliana Zamora	Manning Publications	1/e, 2021				
2	High-Performance Computing	Charles Severance Kevin Dowd	O'Reilly Media	2/e, 1998				
3	Computer Architecture And Parallel Processing	Kai Hwang Faye Alaye Briggs	McGraw-Hill	1/e, 1984				
4	Computer Architecture: A Quantitative Approach	John L. Hennessy David A. Patterson	Morgan Kaufman	6/e, 2017				

	Video Links (NPTEL, SWAYAM)						
Module No. Link ID							
1	https://nptel.ac.in/courses/106108055						
2	https://nptel.ac.in/courses/106108055						
3	https://nptel.ac.in/courses/106108055						
4	https://nptel.ac.in/courses/128106014						

PROGRAMMING LANGUAGES

(Common to CS/CR/CM/CA/AD/AM)

Course Code	PECST758	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To enable the students understand various constructs and their respective comparisons in different high-level languages so that he can choose a suitable programming language for solving a particular problem
- **2.** To develop the student's ability to understand the salient features and paradigms in the landscape of programming languages.

Module No.	Syllabus Description	Contact Hours
1	Introduction - The Origins of Programming Languages, Abstractions in Programming Languages, Computational Paradigms, Language Definition, Language Translation, The Future of Programming Languages; Language Design Criteria - Historical Overview, Efficiency, Regularity, Security, Extensibility, C++: An Object-Oriented Extension of C, Python: A General-Purpose Scripting Language; Syntax and Analysis Parsing: Lexical Structure of Programming Languages, Context-Free Grammars and BNFs, Parse Trees and Abstract Syntax Trees, Ambiguity, Associativity, and Precedence, EBNFs and Syntax Diagrams, Parsing Techniques and Tools, Lexics vs. Syntax vs. Semantics, Case Study: Building a Syntax Analyzer for TinyAda;	9
2	Basic Semantics- Attributes, Binding, and Semantic Functions, Declarations, Blocks, and Scope, The Symbol Table, Name Resolution and Overloading, Allocation, Lifetimes, and the Environment, Variables and Constants, Aliases, Dangling References, and Garbage, Case Study: Initial Static Semantic Analysis of TinyAda. Data Types - Data Types and Type Information, Simple Types, Type Constructors, Type Nomenclature in Sample Languages, Type Equivalence,	9

	Type Checking, Type Conversion, Polymorphic Type Checking, Explicit				
	Polymorphism, Case Study: Type Checking in TinyAda.				
	Expressions and Statements - Expressions, Conditional Statements and				
	Guards, Loops and Variations on WHILE, The GOTO Controversy and Loop				
	Exits, Exception Handling, Case Study: Computing the Values of Static				
	Expressions in TinyAda.				
3	Procedures and Environments- Procedure Definition and Activation,	9			
	Procedure Semantics, Parameter-Passing Mechanisms, Procedure				
	Environments, Activations, and Allocation, Dynamic Memory Management,				
	Exception Handling and Environments, Case Study: Processing Parameter				
	Modes in TinyAda.				
	Abstract Data Types and Modules- The Algebraic Specification of Abstract				
	Data Types, Abstract Data Type Mechanisms and Modules, Separate				
4	Compilation in C, C++ Namespaces, and Java Packages, Ada Packages,	9			
	Modules in ML, Modules in Earlier Languages, Problems with Abstract Data				
	Type Mechanisms, The Mathematics of Abstract Data Types.				

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

At the end of the course students should be able to:

	Course Outcome					
CO1	Understand the history of programming languages and introduce abstraction, the concept of different language paradigms, and an overview of language design criteria.	K1				
CO2	Describe how the syntactic structure of a language can be precisely specified using context-free grammar rules in Backus-Naur form (BNF).	K2				
CO3	Explain the abstractions of the operations that occur during the translation and execution of programs.	K2				
CO4	Apply the data types in various languages	К3				
CO5	Apply procedure activation and parameter passing; and exceptions and exception handling.	K4				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2									3
CO2	2	3	2									3
CO3	3	2	2									3
CO4	3	3	3									3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Programming languages: principles and practices.	Kenneth C Louden	Cengage Learning	3/e, 2011						
2	Concepts of programming languages.	Sebesta R W.	Pearson	12/e, 2023						
3	Programming languages: concepts and constructs.	Sethi R	Pearson	2/e, 2006						

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Programming Languages: Principles and Paradigms	Allen Tucker, Robert Noonan	McGraw-Hill	2/e, 2017							
2	Principles of programming languages.	Gilles Dowek.	Springer	1/e, 2009.							
3	Principles of Programming Languages	Rajiv Chopra	Wiley	1/e, 2019							

Video Links (NPTEL, SWAYAM)						
No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/102/106102067/					

PARALLEL ALGORITHMS

(Common to CS/CM/CD/AM)

Course Code	PECST759	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST303 PCCST502	Course Type	Theory

Course Objectives:

- 1. To develop a comprehensive understanding of parallel computing principles and architectures by studying various types of parallelism, such as data and task parallelism, and analyzing different computing architectures.
- 2. To implement and evaluate parallel algorithms for fundamental operations, such as matrix addition and multiplication, using performance metrics like speedup and scalability, while gaining hands-on experience with parallel programming models and tools.

Module No.	Syllabus Description	Contact Hours				
1	Introduction to Parallel Computing - Overview of parallel computing and its importance, Types of parallelism: data parallelism, task parallelism, Parallel computing architectures: SIMD, MIMD, shared memory, distributed memory. Parallel Programming Models - Parallel programming models: Parallel Random Access Machine (PRAM), bulk synchronous parallel (BSP), LogP,	9				
	Shared memory vs. distributed memory models; Performance Metrics - Performance metrics for parallel algorithms: speedup, efficiency, scalability, Amdahl's Law and Gustafson's Law.					
2	Parallel Algorithms for Basic Operations - Parallel algorithms for matrix addition, matrix multiplication, and reduction, Parallel prefix sum (Parallel scan) algorithms. Case Studies of Parallel Addition, Multiplication, Reduction, and Prefix Sum in Modern Computing Systems; Parallel Sorting Algorithms - Parallel sorting algorithms: parallel merge sort, parallel quicksort, bitonic merge sort, Comparison of parallel sorting techniques.	9				
3	Parallel Graph Algorithms - Parallel algorithms for graph traversal: BFS, DFS, Parallel algorithms for minimum spanning tree (MST) and shortest path.	9				

	Parallel Search Algorithms - Parallel search algorithms: parallel binary search, parallel search trees, Applications and analysis.	
4	Parallel Programming with OpenMP - Introduction to OpenMP, Parallel programming constructs in OpenMP, Performance tuning and optimization Parallel Programming with MPI - Introduction to MPI, Message passing model and MPI basics, Advanced MPI features and applications Parallel Numerical Algorithms - Solving linear systems: parallel Gaussian elimination, parallel LU decomposition, Parallel algorithms for eigenvalue problems, Applications and analysis.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand and articulate the fundamental principles and architectures of parallel computing.	K2
CO2	Implement and evaluate parallel algorithms for basic operations such as sorting and searching.	К3
CO3	Develop and analyze parallel algorithms for complex problems, including graph and numerical algorithms.	К3
CO4	Apply parallel programming techniques to real-world problems and assess the efficiency and performance of parallel solutions.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2								3
CO2	3	3	3	2								3
CO3	3	3	3	3								3
CO4	3	3	3	3			2	2				3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Title of the Book Name of the Author/s							
1	Introduction to Parallel Computing	Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar	Addison-Wesley	2/e, 2003					
2	Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers	Barry Wilkinson and Michael Allen	Pearson India	2/e, 2006					
3	An Introduction to Parallel Algorithms	Joseph Jaja	Addison-Wesley Professional	1/e, 1992					
4	Parallel Algorithms	Henri Casanova, Arnaud Legrand, Yves Robert	Chapman and Hall/CRC	1/e, 2020					
5	Parallel Scientific Computing in C++ and MPI	George Em Karniadakis and Robert M. Kirby II	Cambridge University Press	1/e, 2003					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Parallel Programming for Multicore and Cluster Systems	Thomas Rauber, Gudula Rünger	Springer	3/e, 2023					
2	Using OpenMP: Portable Shared Memory Parallel Programming	Barbara Chapman, Gabriele Jost, Ruud van der Pas	MIT Press	1/e,2007					
3	Using MPI: Portable Parallel Programming with the Message-Passing Interface	William Gropp, Ewing Lusk, Anthony Skjellum	MIT Press	3/e, 2014					

	Video Links (NPTEL, SWAYAM)				
Module No. Link ID					
1	https://archive.nptel.ac.in/courses/106/106/106106112/				
2	https://archive.nptel.ac.in/courses/106/106/106106112/ https://nptel.ac.in/courses/106104120				
3	https://archive.nptel.ac.in/courses/106/106/106106112/ https://nptel.ac.in/courses/106104120				
4	https://archive.nptel.ac.in/courses/106/106/106106112/ https://nptel.ac.in/courses/106104120				

INTERNET OF THINGS

(Common to CS/CM/CA)

Course Code	PECST755	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None		

Course Objectives:

- 1. To provide students with an understanding of IoT architecture, protocols, and integration techniques that enable device-to-device, device-to-cloud, and cloud-to-cloud communications.
- 2. To enable students with the ability to create and implement IoT solutions using platforms like Raspberry Pi, cloud-based services, and analytics tools to develop real-world IoT applications.

Module No.	Syllabus Description	Contact Hours
1	Introduction - Why IoT? Trends in IT Space, Internet of Things Era, Device-to-Device/Machine-to-Machine Integration, Device-to-Cloud (D2C) Integration, IoT Platform as a Service (PaaS), Cloud-to-Cloud (C2C) Integration, IoT Key Application Domains, Emerging IoT Flavors; IoT Ecosystem - Architecture for IoT, Mobile Technologies, Mobile Application Development Platforms, LPWAN.	8
2	Infrastructure and Service Discovery Protocols - Layered Architecture for IoT, Protocol Architecture of IoT, Infrastructure Protocols, Device or Service Discovery for IoT, Protocols & products for IoT Service Discovery; Integration Technologies and Tools - Smart Enterprises and Environments, Sensor and Actuator Networks, The IoT Device Integration Concepts, Standards, and Implementations, The Device Integration Protocols and Middleware, The Protocol Landscape.	10
3	Platforms for IoT Applications and Analytics - The IoT Building Blocks, Usecases, M2M Application Platform, IoT Architectural Building Blocks, Data Analytics Platforms, IoT Data Virtualization Platforms and capabilities, The IoT Edge Data Analytics; Clouds for IoT Applications and Analytics -	8

	Reflecting the Cloud Journey, The Key Motivations for Cloud-Enabled	
	Environments, IoT and Cloud-Inspired Smarter Environments, Hybrid,	
	Federated, and Special-purpose cloud, The Emergence of Edge/Fog Clouds,	
	SDN and SDS.	
	Introduction to Raspberry Pi, Creating your first project, Creating a Sensor to	
	Measure Ambient Light, Creating an Actuator for Controlling Illumination,	
4	Publishing Information Using MQTT & HTTP, Creating Web Pages for Your	10
	Devices.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Students must be assessed to analyze various data collection, analytics, and actuation used in various IoT applications. Evaluation of the technologies and recommendation based on parameters should be done to propose appropriate technologies.

End Semester Examination Marks (ESE):

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. 	60
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand IoT trends, architecture layers, and key technologies, including Device-to-Device, Device-to-Cloud, and Cloud-to-Cloud integration.	K2
CO2	Identify and differentiate between various IoT infrastructure, service discovery, and integration protocols, as well as their roles in IoT ecosystems.	К3
CO3	Develop simple IoT projects using Raspberry Pi, integrating sensors, actuators, and protocols such as MQTT and HTTP to create interactive systems.	К3
CO4	Evaluate cloud and edge computing models, including hybrid and federated environments, and apply these concepts to build scalable and efficient IoT applications.	K5

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No Title of the Book Name of the Author/s Name of the Publisher and Y							
1	The Internet of Things	Pethuru Raj, Anupama C. Raman	CRC Press	1/e, 2017			
2	Mastering Internet of Things	Peter Waher	Pact	1/e, 2018			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Internet of Things : Architecture and Design Principles	Raj Kamal	McGraw Hill	2/e, 2023				
2	Internet of Things : Principles and Paradigms	Rajkumar Buyya Amir Vahid Dastjerdi	Morgan Kaufman	1/e, 2016				
3	Introduction to IoT	Sudip Misra, Anandarup Mukherjee, Arijit Roy	Cambridge University Press	1/e, 2021				

Video Links (NPTEL, SWAYAM)					
No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/105/106105166/				

ALGORITHMS FOR DATA SCIENCE

(Common to CS/AM/CM)

Course Code	PECST785	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Mins.
Prerequisites (if any)	PCCST303 PCCST502	Course Type	Theory

Course Objectives:

- 1. To equip students with the ability to design, analyze, and implement advanced algorithms that are fundamental to data science, enabling them to process and analyze large-scale datasets efficiently and effectively.
- 2. To provide hands-on experience through real-world projects that require students to apply algorithmic techniques to solve data science problems, strengthen the development of practical skills in data manipulation, analysis, and interpretation.

Module No.	Syllabus Description	Contact Hours
1	Foundations of Data Science Algorithms Introduction to Data Science and Algorithms - Overview of data science and its significance, Role of algorithms in data science; Data Preprocessing Techniques - Data cleaning, transformation, and normalization, Handling missing data, outliers, and data imputation techniques; Dimensionality reduction techniques - Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE); Algorithmic Approaches to Data Sampling - Random sampling, stratified sampling, and bootstrapping, Importance of representative sampling in data analysis.	
	Project 1: Data Cleaning and Preprocessing - Develop a pipeline for cleaning and preprocessing a large, messy dataset like UCI Machine Learning Repository - Adult Data Set Tasks: Handle missing values, outliers, and noisy data. Apply	

transformation and normalization processes. Algorithms for Data Summarization and Visualization: Data Summarization Techniques - Central tendency measures: mean, median, mode; Dispersion measures - variance, standard deviation, Interquartile range (IQR), Quantiles, percentiles, and outlier detection; Visualization Algorithms - Basics of data visualization, histograms, bar	
Data Summarization Techniques - Central tendency measures: mean, median, mode; Dispersion measures - variance, standard deviation, Interquartile range (IQR), Quantiles, percentiles, and outlier detection;	
median, mode; Dispersion measures - variance, standard deviation, Interquartile range (IQR), Quantiles, percentiles, and outlier detection;	
Interquartile range (IQR), Quantiles, percentiles, and outlier detection;	
Interquartile range (IQR), Quantiles, percentiles, and outlier detection;	
, 8 ,	
charts, scatter plots; Advanced visualization techniques - heatmaps,	
correlation matrices, and pair plots; Visualization tools and libraries -	
Matplotlib, Seaborn, Plotly; Algorithmic Approaches to Data Grouping -	
2 Clustering: k-means, hierarchical clustering, DBSCAN; Association rule	0
learning - Apriori, FP-Growth.	9
rearining Aprilo1, 11 Growth.	
Project 2: Exploratory Data Analysis and Visualization Perform exploratory	
data analysis (EDA) and create visualizations to uncover patterns and	
insights in the dataset like Kaggle - Titanic Dataset	
Tasks: Summarize the dataset using statistical measures. Create various	
visualizations to explore relationships and patterns in the data. Implement	
clustering algorithms to identify natural groupings within the data.	
Algorithms for Data Modeling:-	
Regression Algorithms - Linear regression and polynomial regression;	
Regularization techniques - Ridge, Lasso, Elastic Net; Evaluation metrics -	
RMSE, MAE, R ² ; Classification Algorithms - Logistic regression, decision	
trees, and k-Nearest Neighbors (k-NN); Performance metrics - accuracy,	
precision, recall, F1-score, ROC-AUC; Algorithmic Optimization	
Techniques - Gradient descent and its variants: stochastic, mini-batch;	
Hyperparameter tuning - grid search, random search, Bayesian optimization.	9
Project 3 : Predictive Modeling and Evaluation - Build and evaluate	
predictive models using regression and classification algorithms using	
datasets like Kaggle - House Prices: Advanced Regression Techniques	
Tasks: Implement linear and polynomial regression models to predict house	
prices. Apply classification algorithms to classify houses into different	
categories. Evaluate the models using appropriate performance metrics and	
fine-tune them for better accuracy.	
Algorithms for Big Data and Scalability:-	9
Introduction to Big Data Algorithms - Overview of big data challenges and	<i></i>

processing techniques; Distributed computing frameworks - Hadoop, Spark; MapReduce paradigm - concepts and applications; Scalable Data Processing Algorithms - Algorithms for large-scale data processing: sorting, searching, filtering; Data partitioning and shuffling techniques in distributed systems; Handling data with memory constraints - external memory algorithms.

Project 4: Scalable Data Processing with Spark - Implement scalable algorithms using Apache Spark to process large datasets efficiently using datasets like Kaggle - Google Analytics Customer Revenue Prediction

Tasks: Set up a Spark environment for large-scale data processing. Implement scalable algorithms for sorting, searching, and filtering the dataset. Analyze the performance of your algorithms on different dataset sizes and optimize for scalability.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Assignment evaluation pattern:

- Correctness and Accuracy (30%) Correct Solution and Implementation.
- Effectiveness and Efficiency (25%) Algorithm Efficiency and Performance Metrics.
- Analytical Depth (25%) Problem Understanding and Solution Analysis.
- Justification and Comparisons (20%) Choice Justification and Comparative Analysis.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Implement data preprocessing and cleaning techniques to prepare raw data for analysis, ensuring the quality and reliability of the datasets.	К3		
CO2	Perform exploratory data analysis (EDA) and create insightful visualizations that help in understanding the underlying patterns and trends in the data.	K4		
CO3	Develop predictive models using various regression and classification algorithms, and optimize them for better performance, applying appropriate evaluation metrics.	K5		
CO4	Implement scalable algorithms using distributed computing frameworks like Apache Spark to process large datasets efficiently.	К6		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							2
CO2	3	3	3	3								2
CO3	3	3	3		3							2
CO4	3	3	3		3							2
CO5	3	3	3		3							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Algorithms for Data Science Hardcover	Brian Steele, John Chandler, Swarna Reddy	Springer International	1/e, 2016			
2	Mining of Massive Datasets	Jure Leskovec, Anand Rajaraman, Jeff Ullman	Cambridge University Press	2/e, 2020			

	Reference Books						
Sl. No	Sl. No Title of the Book Name of the Author		Name of the Publisher	Edition and Year			
1	Foundations of Data Science	Avrim Blum, John Hopcroft and Ravi Kannan	Cambridge University Press	1/e, 2020			
2	The Elements Of Statistical Learning: Data Mining, Inference, And Prediction	Trevor Hastie, Robert Tibshirani and Jerome Friedman	Springer	9/e, 2017			
3	Data Mining: Concepts and Techniques	Jiawei Han, Micheline Kamber and Jian Pei Professor	Morgan Kaufmann	3/e, 2011			
4	Data Mining and Predictive Analytics	Daniel T. Larose	Wiley	2/e, 2015			
5	Hadoop for Dummies	Dirk Deroos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown, Rafael Coss	Wiley	1/e, 2014			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/104/106104189/ https://onlinecourses.nptel.ac.in/noc20_cs92/preview					
2	https://archive.nptel.ac.in/courses/106/104/106104189/ https://onlinecourses.nptel.ac.in/noc20_cs92/preview					
3	https://archive.nptel.ac.in/courses/106/104/106104189/ https://onlinecourses.nptel.ac.in/noc20_cs92/preview					
4	https://archive.nptel.ac.in/courses/106/104/106104189/ https://nptel.ac.in/courses/106105186 https://archive.nptel.ac.in/courses/106/106/106106142/					

CYBER SECURITY

Course Code	OECST721	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Theory

Course Objectives:

- 1. To teach the basic attacks, threats and vulnerabilities related to cyber security
- 2. To make the learner aware of cyber crimes and cyber laws
- **3.** To give concepts of the malwares and its protection mechanisms in systems and mobile devices

Module No.	Syllabus Description	Contact Hours
1	Introduction to Cyber Security:- Basic Cyber Security Concepts, Layers of Security, Vulnerability, Threats, Computer Criminals, CIA Triad, Motive of Attackers, Active attacks, Passive attacks, Software attacks, Hardware attacks, Cyber Threats and its Classifications- Malware, Social Engineering, DoS/DDoS, Insider Threats, Advanced Persistent Threats (APTs), Data Breaches and Information Theft.	9
2	Cybercrime and CyberLaw:- Cybercrime, Classification of Cybercrimes, The legal perspectives- Indian perspective, Global perspective, Categories of Cybercrime. Fundamentals of cyber law, Outline of legislative framework for cyber Law, History and emergence of cyber law, Outreach and impact of cyber law, Major amendments in various statutes.	9
3	Malwares and Protection against Malwares:- Virus, Worms, Trojans, Spyware, Adware, Key-logger, Ransomware, Common Methods of Malware Propagation- Email Attachments, Malicious Websites, Removable Media, File Sharing Networks, Malvertising, Protection against Malware- Antivirus/Antimalware Software, Regular Software Updates, Email Filtering, Web Filtering, Data Backup and Recovery, Strong Passwords and Multi-Factor Authentication (MFA).	9

	Mobile App Security :-	
	Security Implications of Mobile Apps, Mobile App Permission Management	
	and Best Practices, Risks of Location-Based Social Networks, Data Security on	
4	Mobile Devices- Importance of Data Security on Mobile Devices to Protect	9
	Sensitive Information, Risks of Unencrypted Data Storage and Communication	
	on Mobile Platforms, Benefits of Device Encryption, Secure Messaging Apps,	
	and Encrypted Storage Solutions.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the attacks, security mechanisms and services to user information	K2
CO2	Identify the cybercrimes and discuss the cyber laws against the crimes	K2
CO3	Discuss the malwares and the protection mechanisms against malwares	К3
CO4	Describe the issues and solutions related with mobile applications	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3										2
CO2	2	3	2									2
CO3	2	3	2									2
CO4	2	3	2									2

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer Security: Principles and Practices	William Stallings	Pearson	5/e, 2011				
2	Cyber Security- Understanding Cyber Crimes, Computer Forensics and Legal Perspectives	Nina Godbole, Sunit Belapure	Wiley	1/e, 2011				
3	Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives	B.B.Gupta, D.P Agrawal, Haoxiang Wang.	CRC Press	1/e, 2018				
4	Cyber Security Essentials	James Graham, Richard Howard, Ryan Otson	Auerbach	1/e, 2010				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/111/101/111101137/						
2	https://jurnal.fh.unila.ac.id/index.php/fiat/article/download/2667/1961/12044 https://www.coursera.org/learn/data-security-privacy#modules						
3	https://nptel.ac.in/courses/106105217						
4	https://archive.nptel.ac.in/courses/106/106/106106156/						

CLOUD COMPUTING

Course Code	OECST722	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the core principles, architecture, and technologies that underpin cloud computing, including virtualization, data storage, and cloud services.
- **2.** To equip students with the skills to use cloud computing tools effectively, implement cloud-based applications, and address security challenges within cloud environments.

Module No.	Syllabus Description	Contact Hours
1	Introduction - Cloud Computing, Types of Cloud, Working of Cloud Computing, Cloud Computing Architecture - Cloud Computing Technology, Cloud Architecture, Cloud Modelling and Design.	8
2	Virtualization - Foundations, Grid, Cloud And Virtualization, Virtualization And Cloud Computing; Data Storage And Cloud Computing - Data Storage, Cloud Storage, Cloud Storage from LANs to WANs.	9
3	Cloud Computing Services - Cloud Computing Elements, Understanding Services and Applications by Type, Cloud Services; Cloud Computing and Security - Risks in Cloud Computing, Data Security in Cloud, Cloud Security Services.	10
4	Cloud Computing Tools - Tools and Technologies for Cloud, Apache Hadoop, Cloud Tools; Cloud Applications - Moving Applications to the Cloud, Microsoft Cloud Services, Google Cloud Applications, Amazon Cloud Services.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Articulate the fundamental concepts of cloud computing, its types, and how cloud computing architecture operates.	К2
CO2	Understand and describe the foundations of virtualization, its relationship with cloud computing.	К2
CO3	Describe various cloud computing services, understand the different service models, and identify potential risks.	К3
CO4	Demonstrate proficiency in using cloud computing tools such as Apache Hadoop, and deploy applications using popular cloud platforms.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2									2
CO2	2	2	2	2								2
CO3	2	2	2	2								2
CO4	2	2	2	2								2

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Cloud Computing: A Practical Approach for	A.Srinivasan,	Pearson	1/e, 2014							
	Learning and Implementation	J.Suresh		, -							

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Cloud Computing : Concepts, Technology, Security, and Architecture	Thomas Erl	Pearson	2/e, 2023							
2	Cloud Computing	Sandeep Bhowmik	Cambridge University Press	1/e, 2017							
3	Cloud Computing: A Hands-On Approach	Arshdeep Bahga and Vijay Madisetti	Universities Press	1/e, 2014							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://onlinecourses.nptel.ac.in/noc21_cs14/preview								

SOFTWARE ENGINEERING

Course Code	OECST723	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Provide fundamental knowledge in the Software Development Process including Software Development, Object Oriented Design, Project Management concepts and technology trends.
- 2. To enable the learners to apply state of the art industry practices in Software development.

Module No.	Syllabus Description	Contact Hours			
	Introduction to Software Engineering and Process Models - Software				
	engineering, Software characteristics and types, Layers of Software				
	Engineering-Process, Methods, Tools and Quality focus. Software Process				
	models - Waterfall, Prototype, Spiral, Incremental, Agile model - Values and				
	Principles.				
1	Requirement engineering - Functional, Non-functional, System and User	9			
	requirements. Requirement elicitation techniques, Requirement validation,				
	Feasibility analysis and its types, SRS document characteristics and its				
	structure.				
	Case study: SRS for College Library Management Software				
	Software design - Software architecture and its importance, Software				
	architecture patterns: Component and Connector, Layered, Repository, Client-				
	Server, Publish-Subscribe, Functional independence – Coupling and Cohesion				
2	Case study: Ariane launch failure				
	Object Oriented Software Design - UML diagrams and relationships- Static				
	and dynamic models, Class diagram, State diagram, Use case diagram,				

	Sequence diagram			
	Case Studies: Voice mail system, ATM Example			
	Software pattern - Model View Controller, Creational Design Pattern types –			
	Factory method, Abstract Factory method, Singleton method, Prototype			
	method, Builder method. Structural Design Pattern and its types - Adapter,			
	Bridge, Proxy, Composite, Decorator, Façade, Flyweight. Behavioral Design			
	Pattern			
	Coding, Testing and Maintenance:			
	Coding guidelines - Code review, Code walkthrough and Code inspection,			
	Code debugging and its methods.			
	Testing - Unit testing , Integration testing, System testing and its types, Black			
	box testing and White box testing, Regression testing			
3	Overview of DevOps and Code Management - Code management, DevOps			
	automation, Continuous Integration, Delivery, and Deployment (CI/CD/CD),			
	Case study – Netflix.			
	Software maintenance and its types- Adaptive, Preventive, Corrective and			
	Perfective maintenance. Boehm's maintenance models (both legacy and non-	1-		
	legacy)			
	Software Project Management - Project size metrics - LOC, Function points			
	and Object points. Cost estimation using Basic COCOMO.			
	Risk management: Risk and its types, Risk monitoring and management model			
4	Software Project Management - Planning, Staffing, Organisational structures,	7		
	Scheduling using Gantt chart. Software Configuration Management and its			
	phases, Software Quality Management - ISO 9000, CMM, Six Sigma for			
	software engineering.			

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Plan the system requirements and recommend a suitable software process model.	К3
CO2	Model various software patterns based on system requirements.	К3
CO3	Apply testing and maintenance strategies on the developed software product to enhance quality.	К3
CO4	Develop a software product based on cost, schedule and risk constraints.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Software Engineering: A practitioner's approach	Roger S. Pressman	McGraw-Hill	8/e, 2014		
2	Software Engineering	Ian Sommerville	Addison-Wesley	10/e, 2015		
3	Design Patterns, Elements of Reusable Object Oriented Software	Erich Gamma,Richard Helm, Ralph Johnson,John Vlissides	Pearson Education Addison-Wesley	1/e, 2009		

	Reference Books					
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year		
1	Pankaj Jalote's Software Engineering: With Open Source and GenAI	Pankaj Jalote	Wiley India	1/e, 2024		
2	Software Engineering: A Primer	Waman S Jawadekar	Tata McGraw-Hill	1/e, 2008		
3	Object-Oriented Modelling and Design with UML	Michael Blaha, James Rumbaugh	Pearson Education.	2/e, 2007		
4	Software Engineering Foundations : A Software Science Perspective Yingux Wang Auerbach Publications			1/e, 2008		
5	Object-Oriented Design and Patterns	Cay Horstmann	Wiley India	2/e, 2005		
6	Engineering Software Products: An Introduction to Modern Software Engineering	Ian Sommerville	Pearson Education	1/e, 2020		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://www.youtube.com/watch?v=Z6f9ckEElsU				
2	https://www.youtube.com/watch?v=1xUz1fp23TQ				
3	http://digimat.in/nptel/courses/video/106105150/L01.html				
4	https://www.youtube.com/watch?v=v7KtPLhSMkU				
2	https://archive.nptel.ac.in/courses/106/105/106105182/				

COMPUTER NETWORKS

Course Code	OECST724	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Introduce the core concepts of computer networking.
- 2. To Explore routing protocols and their role in network communication

Module No.	Syllabus Description				
	Introduction to Computer Networks:-	Hours			
	Introduction, Network Components, Network Models, ISO/OSI, TCP/IP,				
1	Physical Topology, Overview of the Internet, Protocol layering; Physical	7			
	Layer-Transmission media (copper, fiber, wireless), Datagram Networks,				
	Virtual Circuit networks, Performance.				
	Data Link Layer:-				
	Error Detection and Correction - Introduction, Hamming Code, CRC,				
2	Checksum; Framing-Methods, Flow Control- Noiseless Channels, Noisy	11			
	Channels; Medium Access Control- Random Access, Controlled Access;				
	Wired LANs - IEEE Standards, Ethernet, IEEE 802.11;				
	Network Layer:-				
	Logical Addressing- IPv4 and IPv6 Addresses; Internet Protocol- IPV4 and				
3	IPv6; Unicast Routing Protocols- Distance Vector Routing, Link State	9			
	Routing				
	Multicast Routing Protocols.				
	Transport Layer:-				
	Transport Layer Protocols- UDP, TCP; Congestion Control- Open Loop Vs				
	Closed Loop Congestion Control, Congestion Control in TCP; Application				
4	Layer - Application Layer Paradigms, Client-server applications, World Wide	8			
	Web and HTTP, FTP. Electronic Mail, DNS; Peer-to-peer paradigm - P2P				
	Networks.				

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject Internal Examination-1 (Written)		Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks)	Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks)	60

Course Outcomes (COs)

At the end of the course students should be able to:

		Bloom's
	Course Outcome	Knowledge
		Level (KL)
CO1	Comprehend the OSI and TCP/IP models, the functioning of different network layers, and the protocol stack used in computer networks.	К2
CO2	Evaluate various transmission media (copper, fiber, wireless), error detection/correction methods, and medium access control mechanisms in both wired and wireless LANs.	К2
CO3	Demonstrate a working knowledge of IPv4 and IPv6 addressing schemes, routing protocols (unicast and multicast), and apply them to network scenarios.	К3
CO4	Summarize UDP and TCP protocols, explain congestion control mechanisms, and understand client-server and peer-to-peer applications like HTTP, FTP, DNS, and P2P networks.	К3

Note: K1-Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Networks: A Top- Down Approach	Behrouz A Forouzan	McGraw Hill	SIE, 2017		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Networks, A Systems Approach	L. L. Peterson and B. S. Davie	Morgan Kaufmann	5/e, 2011		
2	TCP/IP Architecture, design, and implementation in Linux	Sameer Seth M. Ajaykumar Venkatesulu	Wiley	1/e, 2008		
3	Computer Networks	Andrew Tanenbaum	Pearson	6/e, 2021		
4	Computer Networking: A Top- Down Approach Featuring Internet	J. F. Kurose and K. W. Ross	Pearson Education	8/e, 2022		

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://nptel.ac.in/courses/106/105/106105183/				

MOBILE APPLICATION DEVELOPMENT

(Common to CS/CA/CM/CD/CR/AI/AM/AD)

Course Code	OECST725	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	0	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GXEST204 OR OECST615	Course Type	Theory

Course Objectives:

- 1. To impart a Comprehensive Mobile Development Knowledge
- 2. To give Proficiency in Flutter and Dart, UI/UX Design Skills
- **3.** To present the Industry Practices and Deployment such as app security, testing.

Module No.	Syllabus Description		
1	Fundamentals of Mobile Application Development: Introduction to Mobile Application Development, Overview of Mobile Platforms: iOS and Android, Introduction to Flutter: History, Features, and Benefits, Setting Up the Flutter Development Environment*, Mobile App Architectures (MVC, MVVM, and BLoC), Basics of Dart Programming Language.	9	
2	User Interface Design and User Experience: Principles of Mobile UI/UX Design, Designing Responsive UIs with Flutter, Using Flutter Widgets: StatelessWidget and StatefulWidget, Layouts in Flutter: Container, Column, Row, Stack, Navigation and Routing in Flutter, Customizing UI with Themes and Styles.	9	
3	Advanced Flutter Development: State Management in Flutter: Provider, Riverpod, and BLoC	9	

	Networking in Flutter: HTTP Requests, JSON Parsing, RESTful APIs Data Persistence: SQLite, SharedPreferences, Hive Asynchronous Programming with Dart: Futures, async/await, and Streams	
4	Industry Practices and App Deployment: Advanced UI Components and Animations, App Security Best Practices, Testing and Debugging Flutter Applications, Publishing Apps to Google Play Store and Apple App Store, Industry Trends and Future of Mobile Development with Flutter	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Explain the basics of mobile application development and different mobile platforms and the environment setup.	K2	
CO2	Apply principles of effective mobile UI/UX design, develop responsive user interfaces using Flutter widgets.	К3	
CO3	Experiment effectively with state in Flutter applications. networking and data persistence in Flutter apps.	К3	
CO4	Apply security best practices in mobile app development and debug Flutter applications effectively.	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Flutter Cookbook	Simone Alessandria	Packt	2/e, 2023	
2	Flutter for Beginners	Alessandro Biessek	Packt	1/e, 2019	

	Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Flutter in Action	Eric Windmill	Manning	1/e, 2019	
2	Flutter and Dart: Up and Running	Deepti Chopra, Roopal Khurana	BPB	1/e, 2023	

	Video Links (NPTEL, SWAYAM)					
No. Link ID						
1	1 https://www.youtube.com/watch?v=VPvVD8t02U8					