QUESTION BANK

THIRD SEMESTER (2020)
MAT201 PARTIAL DIFFERENTIAL EQUATIONS \& COMPLEX ANALYSIS
(For EEE, ECE, CE \& ME)

MODULE I			
1	Solve $(y-z) p+(x-y) q=(z-x)$	3	$\begin{aligned} & \hline \text { KTU JULY } \\ & 2017 \\ & \hline \end{aligned}$
2	Form the partial differential equation from $z=x g(x)+y f(x)$	3	$\begin{aligned} & \hline \text { KTU JULY } \\ & 2017 \\ & \hline \end{aligned}$
3	Solve $(m z-n y) p+(n x-l z) q=l y-m x$	5	$\begin{aligned} & \text { KTU JULY } \\ & 2017 \end{aligned}$
4	Find the partial differential equation representing the family of spheres whose Centre lies on z - axis	3	$\begin{aligned} & \text { KTU JULY } \\ & 2018 \end{aligned}$
5	Find the general solution of $\left(y^{2}+z^{2}\right) p-x y z \quad q=-x z$	6	$\begin{aligned} & \hline \text { KTU JULY } \\ & 2018 \end{aligned}$
6	Find the partial differential equation $\mathrm{z}=\mathrm{x} \mathrm{f}(\mathrm{x})+\mathrm{y} e^{2}$	3	Model qp 2020
7	Solve $3 \mathrm{z}=\mathrm{xp}+\mathrm{yq}$	3	Model qp 2020
8	Solve ($\left.p^{2}+q^{2}\right) \mathrm{y}=\mathrm{qz}$	7	Model qp 2020
9	Derive pde from the relation $\mathrm{z}=\mathrm{f}(\mathrm{x}+\mathrm{at})+\mathrm{g}(\mathrm{x}+\mathrm{at})$	3	Model qp 2020
10	Use Charpit's methods to solve $q+x p=p^{2}$	7	Model qp 2020
11	Find the differential equation of all spheres of fixed radius having their centers in the xy plane.	7	Model qp 2020
12	Find the PDE by eliminating arbitrary function f and g from $z=f(x)+g(y)$	3	KTU Dec 2021
13	Solve $y^{2} p-x y q=x z$	7	KTU Dec 2021
14	Find the complete integral of $p x+q y=p q$ using Charpit's method	7	KTU Dec 2021
15	Form the PDE corresponding to family of sphere with centre on zaxis and radius a	7	KTU Dec 2021
16	Solve $\frac{\partial^{2} z}{\partial x^{2}}=x y$	3	KTU Dec 2021
17	Solve by method of separation of variables $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$, $u(x, 0)=4 e^{-3 x}$	7	KTU Dec 2021
MODULE 2			
1	Write any three assumptions involved in the derivation of the one dimensional wave equation.	3	KTU July 2018
2	A string of the length l fastened at both ends. The midpoint of the string is taken to a height h and the released from the rest in that position. Write the boundary condition and the initial conditions of the string to find the displacement function $\mathrm{y}(\mathrm{x}, \mathrm{t})$ satisfying the one dimensional wave equation.	3	KTU July 2018

3	Using method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}-u$, $u(x, 0)=5 e^{-3 x}$	2	KTU July 2018
4	A tightly stretched string of length 1 fastened at both ends is initially in aposition given by $\mathrm{y}=\mathrm{kx}, 0<x<l$. If it is released from the rest from this position ,find the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$ at any time t and any distance x from the end $\mathrm{x}=0$	5	KTU July 2018
5	Solve the one dimensional wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ with boundary conditions $u(0, t)=0, u(l, t)=0$ for all t and the initial conditions $u(x, 0)=f(x), \frac{\partial u}{\partial t}$	10	KTU July 2018
6	A string of length 20 cm fixed at both ends is displaced from its position of equilibrium position. Find the displacement $u(x, t)$ of this string if it is set vibrating by giving each of its points a velocity $v_{0} \sin \left(\frac{\pi x}{a}\right)$	10	KTU June 2016
7	A tightly stretched string of length ' a ' with fixed ends is initially in equilibrium position. Find the displacement $u(x, t)$ of the string if it is setvibrating by giving each of its points a velocity $v_{0} \sin ^{3}\left(\frac{\pi x}{a}\right)$	10	KTU Aug 2016
8	A tightly stretched string of length L is fixed at both ends. Find the displacement $u(x, t)$ if the string is given an initial displacement $f(x)$ and an initial velocity $g(x)$.	10	KTU Dec 2018
9	A string of length 20 cm fixed at both ends is displaced from its position of equilibrium, by each of its points an initial velocity given by $(x)=\left\{\begin{array}{c}x, 0 \leq x \leq 10 \\ 20-x, 10 \leq x \leq 20\end{array}, \mathrm{x}\right.$ being the distance from one end. Determine the displacement at any subsequent time.	10	KTU May 2017
10	A tightly stretched string with fixed endpoints $\mathrm{x}=0$ and $\mathrm{x}=1$ is initially in aposition given by $u=v_{0} \sin ^{3}\left(\frac{\pi x}{a}\right), 0 \leq x \leq l$. If it is released from rest from this position, find the displacement function $\mathrm{u}(\mathrm{x}, \mathrm{t})$.	10	KTU Dec 2018
11	Solve one dimensional heat equation when $\mathrm{k}>0$	3	KTU May 2017
12	Write down possible solutions of one dimensional heat equation	3	KTU May 2017
13	Derive one dimensional heat equation	10	KTU May 2017, Dec 2021
14	Find the temperature in a laterally insulated bar of length L whose endsare kept at temperature $0^{\circ} \mathrm{C}$, assuming that the initial temperature is $f(x)=\left\{\begin{array}{c}x, 0<x<\frac{L}{2} \\ L-x, \frac{L}{2}<x<L\end{array}\right.$	10	KTU May 2017
15	Write down the fundamental postulates used in the derivation of one dimensional heat equation.	3	KTU July 2018
16	Find the temperature distribution in a rod of length 3 m whose end pointsare maintained at temperature zero and the initial temperature is $f(x)=100\left(2 x-x^{2}\right), 0 \leq x \leq 2$	7	KTU March 2017

17	Write the 3 possible solution of one dimensional wave equation	3	KTU Dec 2021
18	Write any 2 assumptions used in the derivation of one-dimensional heat equation	3	KTU Dec 2021
19	$\begin{aligned} & \text { Solve the boundary value problem described by } u_{t t}-c^{2} u_{x x}= \\ & 0,0 \leq x \leq l, t \geq 0, u(0, t)=u(l, t)=0, t \geq 0, u(x, 0)= \\ & 10 \sin \left(\frac{\pi x}{l}\right), \frac{\partial u}{\partial t}(x, 0)=0 \end{aligned}$	7	KTU Dec 2021
20	Find the temperature $u(x, t)$ in a homogeneous bar heat conducting material of length l whose ends kept at $0^{\circ} \mathrm{C}$ and whose initial temperature is given by $u(x, 0)=l x-x^{2}$	7	KTU Dec 2021
21	Derive the one dimensional wave equation	7	KTU Dec 2021
22	The ends A and B of a rod 10 cm in length are kept at temperature $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ until the steady state condition prevails. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and kept so. Find the temperature distribution in the rod at time t.	7	KTU Dec 2021
MODULE 3			
1	Show that $u=y^{3}-3 x^{2} y$ is harmonic and hence find its harmonic conjugate.	8	KTU DEC 2016
2	Define an analytic function and prove that an analytic function of constant modulus is constant.	8	KTU DEC 2016
3	Check whether the following functions are analytic or not. Justify your answer i) $\quad f(z)=z+\bar{z}$ ii) $\quad f(z)=\|z\|^{2}$	4+4	KTU March 2017
4	Show that $f(z)=\sin z$ is analytic for all z . Find $f^{\prime}(z)$	7	KTU March 2017
5	Show that $v=3 x^{2} y-y^{3}$ is harmonic and find the corresponding analytic function	8	KTU March 2017
6	Let $(z)=u(x, y)+i v(x, y)$ be defined and continuous in some neighborhood of a point $\mathrm{z}=\mathrm{x}+$ iy and differentiable at z itself. Then provethat the first order partial derivatives of u and v exist and satisfy Cauchy- Riemann equations	7	KTU April 2018
7	Prove that $u=\sin x \cosh y$ is harmonic. Hence find its harmonic conjugate.	8	KTU April 2018
8	Check whether the function $f(z)=\left\{\begin{array}{c}\frac{\operatorname{Re}\left(z^{2}\right)}{\|z\|^{2}}, \text { if } z \neq 0 \\ 0, \text { if } z=0\end{array}\right.$ is continuous at $z=0$.	7	KTU April 2018
9	Let $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic, prove that $\mathrm{u}=$ constant, $\mathrm{v}=$ constant are families of curves cutting orthogonally	7	KTU July 2017
10	Prove that the function $\mathrm{u}(\mathrm{x}, \mathrm{y})=x^{3}-3 x y^{2}-5 y$ is harmonic everywhere. Also find the harmonic conjugate of u.	8	KTU July 2017
11	Find the points, if any in complex plane where the function $f(z)=2 x^{2}+y+i\left(y^{2}-x\right)$ is (i) Differentiable (ii) Analytic	8	KTU July 2017

12	Find the analytic function whose imaginary part is $\mathrm{v}(x, y)=\log \left(x^{2}+y^{2}\right)+x-2 y .$	7	KTU May 2019
13	Find the image of $\left\|z-\frac{1}{2}\right\| \leq \frac{1}{2}$ under the transformation $w=\frac{1}{z}$, also find the fixed points of the transformations $w=\frac{1}{z}$	7	KTU Dec 2016
14	Find the image of the lines $\mathrm{x}=\mathrm{c}$ and $\mathrm{y}=\mathrm{k}$ where c and k are constants under the transformation $\mathrm{w}=\sin Z$	7	KTU Dec 2016
15	Find the image of $0<x<1, \frac{1}{2}<y<1$ under the mapping $w=e^{z}$	7	KTU March 2017, Sept 2020
16	Find the image of the rectangular region $-\pi \leq x \leq \pi, a \leq y \leq b$ under the mapping $w=\sin z$	8	KTU March
17	Find the image of the region $\left\|z-\frac{1}{3}\right\| \leq \frac{1}{3}$ under the transformation $w=\frac{1}{z}$	8	KTU April 2018
18	Under the transformation $w=z^{2}$, find the image of the triangular region bounded by $x=1, y=1$ and $x+y=1$	8	KTU May 2019, KTU Sept 2020
19	Find the image of the half plane $\operatorname{Re}(\mathrm{z}) \geq 2$, under the map $\mathrm{w}=\mathrm{iz}$	8	KTU July 2017
20	Under the transformation $w=1 / z$, find the image of $\|z-2 i\|=2$.	8	KTU May 2019
21	Check whether the function $f(z)=\left\{\begin{array}{c}\frac{\operatorname{Re}\left(z^{2}\right)}{1-\|z\|}, \text { if } z \neq 0 \\ 0, \text { if } z=0\end{array}\right.$ is continuous at $z=0$	7	KTU Sept 2020
22	Determine a so that $u=e^{-a x} \cos a y$ is harmonic and find the harmonic conjugate.	8	KTU Sept 2020
23	Show that $f(z)=e^{z}$ is analytic for all z	8	KTU Sept 2020
24	Test the continuity at $z=0$ of $f(z)=\left\{\begin{array}{c}\frac{\operatorname{lm}(z)}{\|z\|}, z \neq 0 \\ 0, z=0\end{array}\right.$	3	KTU Dec 2021
25	Check whether $f(z)=\bar{z}$ is an analytic function.	3	KTU Dec 2021
26	Show that an analytic function $f(z)=u+i v$ is a constant if its modulus is constant.	7	KTU Dec 2021
27	Find the image of $1 \leq\|z\| \leq 2, \frac{\pi}{6} \leq \theta \leq \frac{\pi}{3}$ under the mapping $w=$ z^{2}	7	KTU Dec 2021
28	Verify whether $u=x^{3}-3 x y^{2}$ is harmonic and find its conjugate harmonic function v.	7	KTU Dec 2021
29	Find the image of the region between real axis and a line parallel to real axis at $y=\frac{\pi}{2}$ under the mapping $W=e^{z}$.	7	KTU Dec 2021
MODULE 4			
1	Evaluate $\int_{c} \operatorname{Re}(z) d z$ where c is the straight line from 0 to $1+2 i$	7	KTU Dec 2016
2	Show that $\int_{0}^{\infty} \frac{1}{1+x^{4}} d x=\frac{\pi}{2 \sqrt{2}}$	8	KTU Dec 2016

3	Integrate $\frac{z^{2}}{z^{2}-1}$ counter clockwise around the circle $\mid z-1-$ $i \left\lvert\,=\frac{\pi}{2}\right.$	7	KTU Dec 2016
4	Evaluate $\int_{c}\|z\| d z$ (i) Where c is the line segments joining i and $-i$ (ii) Where c is the unit circle in the left of the half plane.	4+3	KTU March 2017
5	Verify Cauchy-Integral theorem for z^{2} taken over the boundary of the rectangle with vertices $-1,1,1+i, 1-i$ in the counter clockwise sense.	8	KTU March 2017
6	Evaluate $\int_{c} \operatorname{Im}\left(z^{2}\right) d z$ where c is the triangle with vertices 0 , 1, i counter clockwise	7	KTU April 2018
7	Find the Taylor series and Laurent series of $f(z)=\frac{-2 z+3}{z^{2}-3 z+2}$ with centre 0 in (i) $\|z\|<1$ (ii) $1<\|z\|<2$	8	KTU April 2018
8	Use Cauchy's Integral formula evaluate $\int_{c} \frac{z^{2}}{z^{3}-z^{2}-z+1} d z$ where c is taken counter clockwise around the circle (i) $\|z+1\|=\frac{3}{2}$ (ii) $\|z-1-i\|=\frac{\pi}{2}$	8	KTU April 2018
9	Find the Laurent series expansion of $f(z)=\frac{1}{1-z^{2}}$ which is convergent in (i) $\|z-1\|<2$ (ii) $\|z-1-i\|>2$	8	KTU March 2017
10	If $f(z)=\frac{1}{z^{2}}$, find the Taylor series that converges in $\|z-i\|<$ R and the Laurent series that converges in $\|z-i\|>R$	8	KTU Dec 2016
11	Using Cauchy's Integral formula evaluate $\int_{c} \frac{e^{z}}{\left(z^{2}+4\right)(z-1)^{2}} d z$ where c is the circle $\|z-i\|=2$	7	KTU May 2019
12	Evaluate $\int_{0}^{2+i}(\bar{z})^{2} d z$ along (i) The real axis to 2 and then vertically to $2+i$ (ii) The line $2 y=x$	8	KTU May 2019
13	Evaluate $\int_{0}^{1+2 i} \bar{z} d z$ along $z=t^{2}+i t$	7	KTU Sept 2020
14	Evaluate $\int_{c^{-}}^{4+2 i} \frac{2 z-1}{z^{2}-z} d z$ along the curve $c:\|z\|=3$ using Cauchy's Integral formula	8	KTU Sept 2020
15	Find the Maclaurin series of $f(z)=\sin z$	3	KTU Dec 2020
16	Evaluate $\oint_{c} \ln z d z$, where c is the unit circle $\|z\|=1$.	3	KTU Dec 2020
17	Evaluate $\int_{C}\|z\|^{2} d z$, where C is the circle $\|z\|=2$.	7	KTU Dec 2021
18	Evaluate $\int_{C} \frac{z^{2}+2}{(z-3)^{2}} d z$, where C is the circle $\|z\|=4$ using the Cauchy's integral formula.	7	KTU Dec 2021
19	(a) Evaluate $\oint_{c} \frac{e^{z}}{(z-1)(z-4)} d z$, where c is $\|z\|=2$ using the Cauchy's integral formula.	$7+7$	KTU Dec 2021

	(b) Evaluate $\int \frac{3 z^{2}+7 z}{z+1} d z$ over (i) $\|z\|=1.5$ (ii) $\|z+i\|=1$		
20	Evaluate $\oint_{c} \frac{e^{z}}{z-5} d z$, where c is the circle $\|z\|=4$	3	KTU Dec 2021
21	Find the Taylor series expansion of e^{z} about $z=\pi$.	3	KTU Dec 2021
Module 5			
1	Define three types of isolated singularities with an example for each	7	KTU Dec 2016
2	Determine the nature and type of singularities of (i) $\frac{e^{-z^{2}}}{z^{2}}$ (ii) $\frac{1^{2}}{z}$	7	KTU March 2017
3	Use Residue theorem to evaluate $\int_{c} \frac{30 z^{2}-23 z+5}{(2 z-1)^{2}(3 z-1)} d z$ where c is $\|z\|=1$.	7	$\begin{aligned} & \text { KTU March } \\ & 2017 \end{aligned}$
4	Evaluate $\int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} d x$ using residue theorem	8	KTU March 2017
5	Determine and classify the singular points for the following functions (i) $\quad f(z)=\frac{\sin z}{(z-\pi)^{2}}$ (ii) $g(z)=(z+i)^{2} e^{\frac{1}{z+i}}$	7	KTU April 2018
6	Evaluate $\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{3}} d x$	8	KTU April 2018
7	Evaluate $\int_{-C} \frac{\tan z}{z^{2}-1} d z$ counter clockwise around $c:\|z\|=\frac{3}{2}$ using Cauchy's Residue theorem	7	KTU April 2018
8	Using contour integration evaluate $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x$	7	KTU July 2017
9	Evaluate $\int \log z d z$, where C is the circle $\|z\|=1$.	7	KTU May 2019
10	Evaluate $\int \frac{1}{5-3 \sin \theta} d \theta$	8	KTU May 2019
11	Find all singular points and residues of the functions (a) $f(z)=\frac{(z-\sin z)}{z^{2}}$ (b) $f(z)=\tan z$	8	KTU May 2019
12	Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$	8	KTU May 2019
13	Find the Laurent series expansion of $f(z)=\frac{1}{z^{2}+3 z+2}$ in the region $1<\|z\|<2$	8	KTU Sept 2020
14	Find all singularities and corresponding residues $\frac{8}{1+z^{2}}, \tan z$	8	KTU Sept 2020

15	Evaluate $\int_{c} \frac{e^{z}}{\cos n \pi} d z$, where c is the unit circle $\|z\|=1$ using Residue theorem.	8	KTU Sept 2020
16	Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$	8	KTU Sept 2020
17	Give example of (a) removable singularity (b) pole (c) essential singularity	3	KTU Dec 2021
18	Find the Laurent series expansions of $\frac{1}{z(z-1)}$ about $z=0$		KTU Dec 2021
19	(a) Find the Laurent series expansion of $f(z)=\frac{1}{(z-1)(z-2)}$ valid in (i) $\quad 1<\|z\|<2$ (ii) $\|z\|>2$ (b) Evaluate $\int \frac{1}{5-4 \sin \theta} d \theta$	$7+7$	KTU Dec 2021
20	Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}+2}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$	7	KTU Dec 2021
21	Using residue theorem evaluate $\oint_{c} \frac{z+1}{z^{4}-2 z^{3}} d z$, where c is the $\|z\|=\frac{1}{2}$	7	KTU Dec 2021

QUESTION BANK

Subject: EET 201 CIRCUITS AND NETWORKS

S3 EEE

$\begin{aligned} & \text { Sl. } \\ & \text { no } \end{aligned}$	Question	Marks	Year
MODULE 1			
1	Using Superposition Theorem determine the voltage V2 for the circuit shown	5	$\begin{aligned} & \text { KTU } \\ & \text { Jan } \\ & 2017 \end{aligned}$
2	Use Thevenin's Theorem to find the voltage across 3Ω resistor in Fig	10	$\begin{aligned} & \text { KTU } \\ & \text { Jan } \\ & 2017 \end{aligned}$
3	For the circuit shown, determine the load current by using Norton's Theorem	10	$\begin{aligned} & \text { KTU } \\ & \text { Jan } \\ & 2017 \end{aligned}$
4	State and prove Maximum Power Transfer theorem as applied to ac circuits having variable load impedance.	5	KTU Dec 2018
5	Find the Norton's equivalent circuit across a-b for the network shown in Fig. 2	10	$\begin{aligned} & \text { KTU } \\ & \text { Dec } \end{aligned}$

			2018
6	a)State and prove maximum power transfer theorem b)State Superposition theorem c) Based on the following figure, find the current flowing through a 3Ω resistor, using the Superposition theorem. Also, prove that the Superposition theorem is not valid for power calculations.	10	$\begin{aligned} & \text { KTU } \\ & \text { Dec } \\ & 2018 \end{aligned}$
7	In the network shown in figure, determine the value of load resistance for the maximum power transfer. Also find the maximum power transferred.		KTU Dec 2017
8	a) Find the Norton's equivalent circuit for the terminals AB for the circuit shown below b) Using the Superposition theorem, find V2 for the circuit shown	10	$\begin{aligned} & \text { KTU } \\ & \text { Jan } \\ & 2017 \end{aligned}$

9	Compute the power dissipated in the 2Ω resistance in the network shown below, using the superposition principle. Assume all the active sources as ideal.	5	$\begin{aligned} & \text { KTU } \\ & \text { Sep- } \\ & 20 \end{aligned}$
10	Determine the voltage drop across the 8Ω resistance in the circuit given below, using Norton's theorem. Also calculate the power dissipated in the resistance.	10	KTU
11	State reciprocity theorem. Verify reciprocity theorem for the circuit given below.	5	$\begin{aligned} & \text { KTU } \\ & \text { Sep- } \\ & 20 \end{aligned}$
12	State and explain reciprocity theorem using an example.	3	KTU DEC 2021

13	Determine the Norton's equivalent circuit of the following network.	3	KTU DEC 2021
14	For the network given below, a) Find the Thevenin's equivalent circuit across the terminals A and B. b) Determine the power dissipated in a 10Ω resistance when it is connected across the terminals A and B.	14	$\begin{array}{\|l\|} \hline \text { KTU } \\ \text { DEC } 2021 \end{array}$
15	In the circuit given below, a) Determine the value of the load impedance for maximum power transferred by the source to the load. b) Find the maximum power transferred.	14	KTU DEC 2021
MODULE 2			

1	What is the difference between transient analysis and steady state analysis of an electrical network? Explain with suitable example	5	$\begin{aligned} & \text { KTU Jan } \\ & 2017 \end{aligned}$
2	In a series RLC circuit with $\mathrm{R}=4 \Omega, \mathrm{~L}=1 \mathrm{H}$ and $\mathrm{C}=0.25 \mathrm{~F}$, a unit step voltage is applied at $t=0$. Find the expression for the current in the circuit at $\mathrm{t}>0$.	5	$\begin{aligned} & \text { KTU Dec } \\ & 2018 \end{aligned}$
3	The switch in the circuit of Fig. 5 is moved from position 1 to position 2 at $\mathrm{t}=0$. Determine $\mathrm{vc}(\mathrm{t})$.	10	$\begin{aligned} & \text { KTU Dec } \\ & 2018 \end{aligned}$
4	In the network shown in Fig. 6 the switch is opened at $t=0$. Find $i(t)$	10	$\begin{aligned} & \text { KTU Dec } \\ & 2018 \end{aligned}$
5	Find $\operatorname{VC}(\mathrm{t})$ \& $\mathrm{IL}(\mathrm{t})$ in the circuit shown below, assuming zero initial conditions. (Use nodal Analysis)	10	$\begin{aligned} & \text { KTU Dec } \\ & 2018 \end{aligned}$
6	An RL series circuit is excited by sinusoidal voltage $\mathrm{v}(\mathrm{t})=\mathrm{Vm}$ sin ($\mathrm{wt}+\phi$).Derive an expression for the current in the circuit. Discuss the factors which govern the maximum value and rate of decay of transient components of current.	10	$\begin{aligned} & \text { KTU Jan } \\ & 2017 \end{aligned}$
7	In the given circuit, capacitor C has an initial voltage $\mathrm{Vc}(0-)=10 \mathrm{~V}$ and at the same instant, current in the inductor is zero. Switch k is closed at time $t=0$. Obtain expression for voltage across the inductor L.	10	$\begin{aligned} & \text { KTU Jan } \\ & 2017 \end{aligned}$

8	a) Define time constant of a circuit. What is the time constant of an RL circuit? b) How are RLC networks classified according to damping ratios? Sketch the various responses when an RLC series circuit is excited by a DC source.	10	KTU Model QP
9	A series RC circuit has $\mathrm{R}=10 \Omega$ and $\mathrm{C}=1 \mathrm{~F}$. If the circuit is connected to a 10 VDC supply at time $\mathrm{t}=0$, determine (i) the time at which the voltage across the capacitor is 5 V and (ii) the circuit current at that instant.	5	KTU Sep- 20
10	The circuit shown in the figure is initially at steady state, with the switch K opened. If the switch is closed at time $\mathrm{t}=0$, determine the expression for the voltage across the capacitor for $t \geq 0$. Also find its final steady state value.	10	KTU Sep- 20
11	A series RLC circuit with $\mathrm{R}=5 \Omega, \mathrm{~L}=1 \mathrm{H}$ and $\mathrm{C}=0.25 \mathrm{~F}$ is connected to a 10 VDC supply at time $t=0$. Determine the expression for (i) the current $\mathrm{i}(\mathrm{t})$ through the circuit and (ii) voltage across the capacitor $\mathrm{v}(\mathrm{t})$. Use Laplace transform technique.	10	KTU Sep- 20
12	Define time constant of a circuit. Illustrate and explain: does time constant affect the charging time of the capacitor in series RC circuits connected to a DC source?	3	$\begin{array}{\|l\|} \hline \text { KTU } \\ \text { DEC } 2021 \end{array}$
13	Derive the expression for the current in a series RL circuit when connected to a DC source of voltage V , at time $\mathrm{t}=0$. Assume zero initial	3	KTU DEC 2021

	conditions.		
14	a) In the circuit shown below, the switch was initially at position 1 and the steady state condition is reached. At $t=0$, the switch is changed to position 2. Determine the expression for the current $i(\mathrm{t})$, for $t>0$ b) A 0.25 F capacitor with an initial voltage of 10 V is connected across a coil of 5Ω resistance and 1 H inductance, at time $t=0$. Determine the expression for the current through the coil for $t>$ 0.	14	KTU DEC 2021
15	In the circuit given below, the switch K is closed at $t=0$. a) Determine the expression for the voltage across the capacitor, $v(t)$ for $t>0$. (10) b) Calculate the value of $v(t)$ at $t=1$ seconds and its final steady state value	14	KTU DEC 2021
MODULE 3			
1	Write the mesh equations in s-domain for the network of figures, when a 10 Vsource is switched on. The primary and secondary self-inductances are $\mathrm{L} 1=\mathrm{L} 2=1 \mathrm{H}$ and $\mathrm{M}=0.5 \mathrm{H}$.	5	KTU Jan 2017
2	a) Explain the dot convention used in coupled circuits. b) Derive the s-domain equivalent circuit of an inductor carrying	10	KTU Model Question

	an initial current of Io.		
3	Figure. 7 shows a network with mutual coupling. Find the current in the 10Ω resistance. Assume that inductors have negligible resistance	10	$\begin{array}{\|l} \text { KTU Dec } \\ 2018 \end{array}$
4	In the given circuit shown in fig.(7), the switch is closed to position 1 at $\mathrm{t}=0$ and after a time equal to one time constant it is moved to position 2. Find the expression for current after moving to position 2. Assume zero initial charge on the capacitor. (Use Laplace transform technique).	10	KTU Jan 2017
5	Find the voltage across the 5 ' Ω resistor in the circuit shown in fig.	5	KTU Jan 2017
6	In the circuit shown, at time $t=0$, the switch was closed. a) Model the circuit in s-domain for time t $\quad>0$.	10	KTU Model QP

	b) Through mesh analysis, obtain the time domain values of values of i1, i2 and i3 Given that the capacitor and inductor were initially relaxed.		
7	Find the current through circuit shown in Fig. 1.	5	KTU April 2018
8	The switch S in the circuit of Fig.is in the closed position for a long time at $\mathrm{t}=0$, the switch opens. Find the expression for the current using Laplace transform.	10	$\begin{aligned} & \text { KTU } \\ & \text { April } \\ & 2018 \end{aligned}$
9	The switch K in the circuit given below has been at position 1 for a long time. At $t=0$, the switch is moved to position 2 . Determine the current flowing through the 1Ω resistance for $t \geq 0$ using Laplace transform technique.	5	KTU Sep- 20
10	a) A series RL circuit with $\mathrm{R}=10 \Omega$ and $\mathrm{L}=2 \mathrm{H}$ is connected to a 20 V DC supply at time $t=0$. Plot the variation of inductor current and voltage across the resistor for $\mathrm{t} \geq 0$ by deriving the expression for the same. b) Determine the loop current I2 in the circuit given below.	10	KTU Sep- 20

11	Define coefficient of coupling in coupled circuits. What are its maximum and minimum values?	3	KTU DEC 2021
12	Obtain the transfer function of a typical series RLC circuit. Take the voltage across the capacitor as the output variable.	3	KTU DEC 2021
13	a) Obtain the conductively coupled equivalent circuit for the network given below. Also write the mesh equations for the equivalent circuit. b) If the network given below is connected across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ AC source, determine the current supplied by the source.	14	KTU DEC 2021
14	The switch K in the circuit given below is closed at $\mathrm{t}=0$. a) Determine the transformed circuit for $\mathrm{t}>0$. Assume zero initial conditions. b) Find the time domain expression for the voltage $\mathrm{v}(\mathrm{t})$ across the 5Ω resistor for $\mathrm{t}>0$. Use mesh analysis.	14	KTU DEC 2021
MODULE 4			
1	Describe the variation of impedance and phase angle as a function of frequency in a series RLC circuit	5	KTU Model QP
2	Define quality factor. Derive quality factor for inductive and capacitive circuits.	5	KTU Model QP

3	The following load is delta connected to a 100 V three phase system. Find the phase currents, line currents and total power consumed by the load.	14	KTU Model QP
4	An unbalanced 4 wire, star connected load is connected to a balanced voltage of 400 V . The loads are: $\mathrm{Z} 1=(3+6 \mathrm{j}) \Omega ; \mathrm{Z} 2=(2+2 \mathrm{j}) \Omega ; \mathrm{Z3}=$ (14+18j) Ω Calculate a) Line currents b) Current in neutral wire c) Total power	14	KTU Model QP
5	Define Quality factor of Series resonance circuit. Give an equation of it.	5	KTU Jan 2017
6	Derive an expression for an a.c series circuit that has a resistance of 10 W , an inductance of 0.2 H and a capacitance of $60 \mu \mathrm{~F}$, voltage applied to the circuit is 200 V . Calculate: (a) resonant frequency (b) current (c) power at resonance	5	KTU Jan 2017
7	Define Quality Factor of Parallel resonance circuit. Give equation of it	10	KTU Jan 2017
8	Derive an expression for resonant frequency of a series RLC circuit.	10	KTU Jan 2017
9	Describe the variation of the impedance, power factor and current as a function of frequency in a series resonant circuit.	3	$\begin{array}{\|l\|} \hline \text { KTU } \\ \text { DEC } 2021 \end{array}$
10	A series RLC circuit with $R=10 \Omega, L=2 H$ and $C=0.5 F$ is connected to a 230 V , variable frequency AC source. Determine the frequency of the source at which the circuit current is maximum. Also find the maximum current	3	$\begin{array}{\|l\|} \hline \text { KTU } \\ \text { DEC } 2021 \end{array}$
11	A 400 V , three-phase supply feeds an unbalanced three-wire, star-connected load. The branch impedances of the load are $Z_{R}=10 \Omega, Z_{Y}=-j 5 \Omega$ and $Z_{B}=j 15 \Omega$. Calculate the line currents.	14	$\begin{array}{\|l\|} \hline \text { KTU } \\ \text { DEC } 2021 \end{array}$
MODULE 5			
1	The ABCD parameters of a two port network are $\mathrm{A}=3, \mathrm{~B}=160, \mathrm{C}=0.05$, $D=3$. Find the equivalent T and Π network.	5	KTU Jan 2017
2	Determine the h-parameters of the network shown in figure below and hence check whether the network is symmetrical.	5	KTU Jan 2017

3	What are T parameters? Express T parameters in terms of Y parameters	5	$\begin{aligned} & \text { KTU Jan } \\ & 2017 \end{aligned}$
4	Explain the symmetry and reciprocity property of a two port network. State the conditions for them in terms of different parameters.	5	$\begin{aligned} & \text { KTU Jan } \\ & 2017 \end{aligned}$
5	For the network shown in figure, find a)z-parameters and b) ABCD parameters	10	$\begin{aligned} & \text { KTU July } \\ & 2017 \end{aligned}$
6	Determine hybrid parameters for the network shown in Fig. below	10	$\begin{aligned} & \text { KTU July } \\ & 2017 \end{aligned}$
7	For the network shown in figure, determine driving point admittance Y11(s) at port 1 and transferadmittanceY21(s).	10	$\begin{aligned} & \text { KTU Dec } \\ & 2018 \end{aligned}$
8	Find the Z and Y parameters for the network shown in figure.	10	$\begin{aligned} & \text { KTU Dec } \\ & 2018 \end{aligned}$
9	a) What are ABCD parameters? Why are they called transmission parameters? b) Show that for a two-port network $[\mathrm{Y}]=[\mathrm{Z}]-1$	10	$\begin{aligned} & \text { KTU Sep- } \\ & 20 \end{aligned}$

10	a) The following measurements are taken while conducting an experiment on a two port network. If two such identical networks are connected in parallel, determine the Parameters of the overall network. b) The port currents of a two port network are given by Find the equivalent network $\begin{gathered} I_{1}=4 V_{1}-2 V_{2} \\ I_{2}=-2 V_{1}+5 V_{2} \end{gathered}$	10	KTU Sep- 20
11	Find the transmission parameters of the following network and hence determine whether the network is reciprocal.	5	KTU Sep- 20
12	Show that the overall T-parameter matrix of two cascaded 2-port networks is the product of the T-parameter matrix of the individual networks.	3	$\begin{array}{\|l} \text { KTU } \\ \text { DEC } 2021 \end{array}$
13	What are h-parameters? Why are they called hybrid parameters?	3	KTU DEC 2021
14	a) Find the transmission parameters of the network shown in the figure. b) Find the driving point impedance of the network given below.	14	KTU DEC 2021

QUESTION BANK

Subject: EET203 MEASUREMENTS AND INSTRUMENTATION
S3 EEE

MODULE 1			
Sl.No	Question	Marks	Year
1	Define the following terms in measurement i) Accuracy ii) Resolution iii) Precision	5	$\begin{gathered} \text { KTU } \\ \text { DEC } 2018 \end{gathered}$
2	The weight of 5 g is used as control weight in a gravity controlled instrument. Find its distance from the spindle, if the deflecting torque for a deflection of 600 is $1.13 \times 10-3$.	5	$\begin{gathered} \text { KTU } \\ \text { MAY } 2019 \end{gathered}$
3	Explain the working of attraction type and repulsion type of moving iron instrument with the help of neat diagrams	10	$\begin{gathered} \text { KTU } \\ \text { MAY } 2019 \end{gathered}$
4	Write short note on deflecting, damping and controlling torque	5	$\begin{gathered} \text { KTU } \\ \text { MAY } 2019 \end{gathered}$
5	Resistance of unknown resistance determined by Wheatstone bridge given by $\mathrm{R} 4=\mathrm{R} 1 \mathrm{R} 2 / \mathrm{R} 3$ where limiting values of various resistances are R1 $=500 \Omega+1 \%, \mathrm{R} 2=615 \Omega 1 \% . \mathrm{R} 3=100 \Omega+0.5$ \%.Calculate: i) Nominal value of unknown resistor ii) ii) Absolute error of unknown resistor in ohm. iii) iii) Limiting error in percentage of unknown resistor.	5	KTU APR 2018
6	Draw the block diagram of a typical measurement system and indicate the functional elements in detail.	5	KTU APR 2018
7	Amoving coil ammeter has fixed shunt of 0.01Ω. With a coil resistance of 750Ω and a voltage drop of 500 mV across it, the full scale deflection is obtained. (i) Calculate current through shunt. (ii) Calculate resistance of meter to give full scale deflection if shunted current is 60A	5	KTU APR 2018
8	Define the following terms in measurement i) Accuracy ii) Resolution iii) Precision	5	$\begin{gathered} \text { KTU } \\ \text { DEC } 2018 \end{gathered}$
9	Explain the construction and working principle of a single-phase dynamometer type wattmeter, what are the errors present in it?	10	$\begin{gathered} \text { KTU } \\ \text { DEC } 2018 \end{gathered}$
10	Explain the construction and principle of operation of permanent magnet moving coil instrument.	10	$\begin{gathered} \text { KTU } \\ \text { DEC } 2018 \end{gathered}$
11	A dc meter having a coil of resistance 3Ω gives full scale deflection when acurrent of 60 milliampere is passed through it. Show that it can be adopted to do work:	10	$\begin{gathered} \text { KTU } \\ \text { DEC } 2018 \end{gathered}$

	i) As an ammeter with a range of 0-6A, ii)As a voltmeter with arrange of $0-600 \mathrm{~V}$.		
12	List the different types of errors in measurements?	5	$\begin{gathered} \text { KTU } \\ \text { SEP } 2020 \end{gathered}$
13	Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC?	10	KTU SEP 2020
14	How the range of DC ammeter and DC voltmeter can be extended. Derive the expression to find the shunt resistance and multiplier resistance?	5	$\begin{gathered} \text { KTU } \\ \text { SEP } 2020 \end{gathered}$
15	What are the different methods of obtaining the controlling torque in an indicating instrument?	5	KTU DEC 2019
16	Explain the construction and principle of operation of Permanent Magnet Moving Coil Instrument? Derive it's torque equation?	10	KTU DEC 2019
17	Explain the general requirements for ammeter shunts.	5	KTU DEC 2019
MODULE 2			
Sl.No	Question	Marks	Year
1	Explain any two errors that occur in electrodynamometer type wattmeter and its compensation	5	KTU MAY 2019
2	Explain the working of electronic energy meter.	5	KTU MAY 2019
3	Write short note on 3 phase induction type energy meter	5	KTU MAY 2019
4	Draw the phasor diagram of a current transformer. Derive the expressions for ratio and phase angle errors.	10	KTU MAY 2019
5	Describe the construction and working principle of single phase induction type energy meter.	5	KTU APR 2018
6	Give the construction and working principle of dynamometer type instrument. Also indicate the different errors in dynamometer type watt meters.	5	KTU APR 2018
7	The coil of a moving coil voltmeter is 40 mm long and 30 mm wide and has 100 turns on it. The control spring exerts a torque a torque of $240 \times 10-6 \mathrm{Nm}$ when the deflection is 100 divisions on full scale. If the flux density of magnetic field in air-gap is $1 \mathrm{wb} / \mathrm{m} 2$. Calculate the resistance that must be put in series with the coil to give $1 \mathrm{~V} /$ division. The resistance of voltmeter coil may be neglected.	5	KTU APR 2018
8	A 1000/5A, 50 Hz current transformer has a secondary burden	5	KTU

	comprising a non-inductive impedance of 1.6Ω. The primary winding has one turn. Calculate the flux in the core and ratio error at full load. Neglect leakage reactance and assume iron loss in the core to be 1.5 W at full load and $\mathrm{mmf}=100 \mathrm{~A}$.		APR 2018
9	Describe the working of hall effect sensors.	5	KTU APR 2018
10	Write short notes on Electronic Energy Meters.	5	$\begin{gathered} \text { KTU } \\ \text { DEC } 2019 \end{gathered}$
11	Explain the construction and working principle of a single-phase dynamometer type wattmeter, what are the errors present in it?	10	$\begin{gathered} \text { KTU } \\ \text { DEC } 2019 \end{gathered}$
12	Explain the construction and principle of operation of permanent magnet moving coil instrument.	10	$\begin{gathered} \text { KTU } \\ \text { DEC } 2019 \end{gathered}$
13	Write short notes on TOD meter	5	$\begin{gathered} \text { KTU } \\ \text { DEC } 2019 \end{gathered}$
14	A dc meter having a coil of resistance 3Ω gives full scale deflection when a current of 60 milliampere is passed through it. Show that it can be adopted to do work: i)As an ammeter with a range of $0-6 \mathrm{~A}$, ii)As a voltmeter with arrange of $0-600 \mathrm{~V}$.	5	$\begin{gathered} \text { KTU } \\ \text { DEC } 2019 \end{gathered}$
15	Write short notes on TOD meter	5	$\begin{gathered} \text { KTU } \\ \text { DEC } 2019 \end{gathered}$
16	A current transformer with a bar primary has 400 turns in the secondary. The resistance and reactance of secondary circuit are 1.4 ohms and 1.0 ohms respectively including the transformer winding with 6A flowing in secondary winding. The magnetizing mmf is 110 A and Iron loss is 1.3 W . Find the ratio and phase angle errors (Assume nominal ratio to be equal to turns ratio).	5	$\begin{gathered} \text { KTU } \\ \text { DEC } 2019 \end{gathered}$
17	Write short notes on TOD meter?	5	$\begin{gathered} \text { KTU } \\ \text { SEP } 2020 \end{gathered}$
18	Write short notes on Phasor Measurement Units?	5	$\begin{gathered} \text { KTU } \\ \text { SEP } 2020 \end{gathered}$
19	Explain the construction and theory of a single-phase induction type energy meter. Show that number of revolutions in time t is proportional to energy supplied.	10	$\begin{gathered} \text { KTU } \\ \text { SEP } 2020 \end{gathered}$
20	Draw the equivalent circuit and phasor diagram of a current transformer. Derive the expression for ratio and phase angle errors?	10	Sep 2020
21	Explain the construction and working principle of an induction type energy meter. Show that number of revolutions of the disc in induction type energy meter is proportional to energy consumed?	10	$\begin{gathered} \text { KTU } \\ \text { DEC } 2019 \end{gathered}$
22	Explain any two errors that occur in electrodynamometer type wattmeter and its compensation?	5	$\begin{gathered} \text { KTU } \\ \text { DEC } 2019 \end{gathered}$

23	Derive the expression for Ratio and Phase angle error in a Current Transformer? (10	$\begin{gathered} \text { KTU } \\ \text { DEC } 2019 \end{gathered}$
MODULE 3			
Sl.No	Question	Marks	Year
1	Explain the measurement of insulation resistance by loss of charge method.	5	$\begin{gathered} \text { KTU } \\ \text { MAY } 2019 \end{gathered}$
2	How high voltage is tested using the method of sphere gaps?	5	$\begin{gathered} \text { KTU } \\ \text { MAY } 2019 \end{gathered}$
3	Derive the equations for balance in the case of Maxwell's inductance-capacitance bridge.	5	$\begin{gathered} \text { KTU } \\ \text { MAY } 2019 \end{gathered}$
4	Explain the working of a dc potentiometer with figure.	5	$\begin{gathered} \text { KTU } \\ \text { MAY } 2019 \end{gathered}$
5	Classify resistances based on the range of measurement. With neat sketch describe the loss of charge method for the measurement of insulation resistance of length of a cable	5	KTU APR 2018
6	Define the terms related to instrument transformer: i) Transformation ratio ii) Nominal Ratio iii) Burden.	5	KTU APR 2018
7	With the help of diagram indicate the calibration of wattmeter using dc potentiometer.	5	KTU APR 2018
8	With the help of neat sketch describe the method of measurement of earth resistance.	5	KTU APR 2018
9	Using Schering bridge show how capacitance and dissipation factor of unknown capacitor is measured.	5	KTU APR 2018
10	What is Maxwell's bridge? Derive the equation of balance for the bridge		KTU DEC 2019
11	Discuss the methods for measuring high AC voltages.	5	KTU DEC 2019
12	The arm of a four-arm bridge ABCD supplied with sinusoidal voltage have the following values Arm AB: a resistance of 250 Ω in parallel with a capacitance $2 \mu \mathrm{~F} \mathrm{Arm} \mathrm{BC:} 425 \Omega$ Arm CD: 999Ω Arm DA: a resistance R2 in series with a $2.5 \mu \mathrm{~F}$ capacitance Find the value of R2 and find the frequency at which the bridge will balance.	5	KTU DEC 2019
13	What is Schering bridge? Develop the equation of balance for the bridge?	5	$\begin{gathered} \text { KTU } \\ \text { SEP } 2020 \end{gathered}$
14	Describe the measurement of earth resistance by using fall of potential method	5	$\begin{gathered} \text { KTU } \\ \text { SEP } 2020 \end{gathered}$
15	Explain any two applications of DC potentiometer?	5	KTU

			SEP 2020
16	What is Maxwell's bridge? Derive the equation of balance for the bridge?	5	$\begin{gathered} \text { KTU } \\ \text { SEP } 2020 \end{gathered}$
17	Explain basic potentiometer principle. Also explain the calibration of ammeter, voltmeter and wattmeter using potentiometer.	10	KTU SEP 2020
MODULE 4			
Sl.No	Question	Marks	Year
1	What is a Lloyd- Fisher square? Explain the measurement of iron losses in a magnetic material employing Lloyd-Fisher square using wattmeter method.	10	KTU MAY 2019
2	Describe the method for determination of B-H curve of magnetic material using step-by step method	5	KTU APR 2018
3	Compare temperature measurement using RTD and thermistors.	10	KTU APR 2018
4	Describe an experiment for obtaining flux density in a specimen of magnetic material with the help of ballistic galvanometer.	10	KTU APR 2018
5	State the components of iron loss and write down their expressions.	3	KTU APR 2018
6	A solenoid 1 m long and wound with 960 turns has a search coil of 60 turns and cross-sectional area 340 mm 2 at its centre. Reversing a current of 3.5 A in the solenoid causes a deflection of 4 divisions in a ballistic galvanometer connected to the search coil. Calculate: i) Galvanometer constant in flux linkages per division ii) Flux linkage sensitivity	3	KTU APR 2018
7	Define transducers and classify them.	5	KTU APR 2018
8	Discuss the determination of iron losses by using Lloyd fisher magnetic square method.	10	KTU DEC 2019
9	Explain how BH curve can be determined using Ballistic galvanometer?	5	KTU DEC 2019
10	Write short notes on thermistors.	5	KTU DEC 2019
11	Describe the method for the measurement of flux density of magnetic material using flux meter?	5	$\begin{gathered} \text { KTU } \\ \text { SEP } 2020 \end{gathered}$
12	List any three classifications of transducers?	5	KTU SEP 2020

13	Discus the determination of hysteresis loop of a magnetic material by using step by step method?	6	KTU SEP 2020
14	What is LIoyd Fisher square?	5	KTU SEP 2020
15	Compare RTD and Thermistor?	5	KTU SEP 2020
16	Explain how BH curve can be determined using Ballistic galvanometer?	5	KTU DEC 2019
17	What are primary and secondary transducers?	5	KTU DEC 2019
18	What do you mean by Lloyd -Fisher square? How it can be used for determination of iron losses in a specimen. Explain.	10	KTU DEC 2019
MODULE 5			
Sl.No	Question	Marks	Year
1	Draw the diagram of a Cathode Ray Tube.	5	KTU MAY 2019
2	Explain the flow measurement using ultrasonic transducer.	5	$\begin{gathered} \text { KTU } \\ \text { MAY } 2019 \end{gathered}$
3	Explain the working of piezoelectric transducer.	10	$\begin{gathered} \text { KTU } \\ \text { MAY } 2019 \end{gathered}$
4	Explain how CRO can be used to measure frequency and phase angle	10	MAY 2019
5	Explain the measurement of any non-electrical quantity employing load cell.	5	$\begin{gathered} \text { KTU } \\ \text { MAY } 2019 \end{gathered}$
6	How strain is measured using a strain gauge?	5	$\begin{gathered} \text { KTU } \\ \text { MAY } 2019 \end{gathered}$
7	Describe bonded and unbonded strain gauge with their principle of operation.	5	KTU APR 2018
8	What is Lissajous pattern? Clearly indicate the factors on which shape of these figures depends.	5	KTU APR 2018
9	Draw the block diagram of digital Storage oscilloscope. State the three modes of operation	3	KTU APR 2018
10	Define the deflection sensitivity of CRT.	10	KTU APR 2018
11	With the help of neat sketch explain the working of LVDT. Also draw its characteristics	5	KTU APR 2018
12	Write short notes on clamp-on meters.	5	KTU

			DEC 2019
13	Discuss the working of a load cell	5	KTU DEC 2019
14	Discuss the working of a piezoelectric transducer in detail.	5	KTU DEC 2019
15	Draw a neat block diagram of a cathode ray oscilloscope, specify the function of each block and explain its working principle.	10	KTU DEC 2019
16	Explain the basic principle and working of LVDT.	6	KTU DEC 2019
17	Draw and explain the different parts of cathode ray tube?	5	KTU SEP 2020
18	Explain the working of a Load cell?	5	KTU SEP 2020
19	Write short notes on Lissajous patterns. Explain how are they used for the measurement of frequency and phase angle?	10	KTU SEP 2020
20	With a neat sketch explain the principle of operation of LVDT.	5	KTU SEP 2020
21	Write short notes on Electromagnetic flow meter?	5	KTU SEP 2020
22	Discuss the working of a load cell?	KTU DEC 2019	
23	Explain the basic principle and working of LVDT?	KTU DEC 2019	
24	Write short notes on RTD?	KTU DEC 2019	
25	Draw a neat block diagram of a Cathode Ray Oscilloscope and specify the function of each block. Also Explain its working principle	10	KTU DEC 2019

QUESTION BANK

EET 205: ANALOG ELECTRONICS

Sl No:	Questions	Marks	Year
Module - 1			
1.	Derive an expression for the collector current I_{C} and V_{CE} in the case of collector to base biasing in CE amplifier with the circuit diagram and describe how operating point stabilization is provided by this biasing method.	5	January 2022 (2015 Scheme)
	Draw the collector to base bias circuit of transistor amplifier using the given values and determine the following. i) I_{C} ii) V_{CE}. Given $\beta=80, \mathrm{R}_{\mathrm{B}}=100 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{C}}=10 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.	4	December 2020 (2019 Scheme)
2.	With circuit diagram explain bias compensation using thermistor.	5	January 2022 (2015 Scheme)
	Explain any one compensation technique used for reducing the drift of operating point.	5	April 2018 (2015 Scheme)
	Explain any compensation technique adopted in transistor amplifier for reducing the drift of operating point.	5	January 2017 (2015 Scheme)
3.	Show that voltage divider biasing circuit is stable against temperature variations.	5	January 2022 (2015 Scheme)
	Draw the circuit of a BJT in potential divider bias configuration. Derive the expression for Q point voltage and current.	5	September 2020 (2015 Scheme)
	Draw a voltage divider bias circuit and derive the equations of voltage and current at input and output terminals.	5	July 2017 (2015 Scheme)
4.	In a potential divider biasing circuit, $\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{R}_{1}=39 \mathrm{k} \Omega$, $\mathrm{R}_{2}=3.9 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=1.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=10 \mathrm{k} \Omega, \beta=100$. Determine the operating point.	5	December 2020 (2015 Scheme)
	Design a Voltage divider circuit for a silicon transistor with $\mathrm{h}_{\mathrm{fe}}=100$ and $\mathrm{S} \leq 8$. The desired Q -point is $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$. Assume $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{E}}=1 \mathrm{k} \Omega$	10	December 2019 (2015 Scheme)
	Design a voltage divider bias circuit for a NPN transistor with he $=100$ and $\mathrm{V}_{\mathrm{BE}}=0.6 \mathrm{~V}$, to operate from a 12 V dc supply. The bias conditions are $\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=1.2 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$.	5	April 2018 (2015 Scheme)

	For the circuit shown in figure, $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=2 \mathrm{k} \Omega$, $\beta=50, \quad \mathrm{~V}_{\mathrm{BE}}=0.2 \mathrm{~V}, \quad \mathrm{R}_{1}=100 \mathrm{k} \Omega, \quad \mathrm{R}_{2}=5 \mathrm{k} \Omega \quad$ and $\mathrm{R}_{\mathrm{E}}=100 \Omega$. Calculate $\mathrm{I}_{\mathrm{B}}, \mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}$ and stability factor, S .	10	December 2020 (2019 Scheme)
	Design a voltage divider bias circuit to obtain the following specifications and determine the stability factor. Assume the ratio of base current to the current through $\mathrm{R}_{\mathrm{B} 2}$ is $1: 10$. Given $\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}$, $\beta=100, \mathrm{~V}_{\mathrm{CE}}=50 \%$ of $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{RE}}=10 \%$ of $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{C}}=0.8 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$.	6	May 2019 (2015 Scheme)
	Obtain the operating point set by the voltage divider bias circuit for an NPN CE transistor with $\beta=50$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$. Given $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}, \mathrm{R}_{1}=82 \mathrm{k} \Omega, \mathrm{R}_{2}=22 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=5.6 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{E}}=1.2 \mathrm{k} \Omega$.	6	December 2018 (2015 Scheme)
	Design a voltage divider bias circuit to operate from an 18 V	10	December 2017 (2015 Scheme)
	$1.5 \mathrm{~mA} . \beta=90$. Also calculate the stability factor S .	14	Model Question Paper
	Why is voltage divider bias relatively stable against changes in h_{fe} ? Design voltagedivider bias circuit to operate from a 12 V supply. The bias conditions are $\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{c}}=1 \mathrm{~mA}$.	5	January 2017 (2015 Scheme)
5.	Derive the equation for voltage gain and current gain for a BJT using h -parameter model for Common Emitter configuration.	6	December 2020 (2015 Scheme)

	Derive the expressions for current gain, input impedance, voltage gain and output impedance using complete h-parameter equivalent circuit of CE amplifier.	10	December 2020 (2019 Scheme)
	Draw and explain the h parameter small signal low frequency model for BJT.	4	December 2018 (2015 Scheme)
	Derive the expressions for current gain, input impedance, voltage gain andoutput impedance using h parameters of BJT.	6	December 2018 (2015 Scheme)
	Draw the h parameter model of a transistor in CE configuration. Also derive the expression for input impedance, current gain and voltage gain.	5	April 2018 (2015 Scheme)
	Draw and explain the h parameter small signal low frequency model for BJT.	3	Model Question Paper
	Derive the equation for voltage gain and current gain for a BJT using approximate h-parameter model for Common Emitter configuration.	6	July 2017 (2015 Scheme)
6.	A common emitter amplifier is driven by a voltage source of internal resistance $\mathrm{R}_{\mathrm{s}=} 500 \Omega$. The load impedance is $\mathrm{R}_{\mathrm{L}}=2000 \Omega$. The h-parameters are $\mathrm{h}_{\mathrm{ie}}=1200 \Omega, \mathrm{~h}_{\mathrm{re}}=2.2 \times 10^{-4}, \mathrm{~h}_{\mathrm{fe}}=50$ and $\mathrm{h}_{\mathrm{oe}}=20 \mu \mathrm{~A} / \mathrm{V}$. Determine the a) current gain A_{i}, b) input impedance Z_{i} c) voltage gain A_{v}	5	January 2022 (2015 Scheme)
	A CE amplifier has the h -parameters given by $\mathrm{h}_{\mathrm{ie}}=1000 \Omega$, h_{re} $=2.5 \times 10^{-4}, \mathrm{~h}_{\mathrm{fe}}=50$ and $\mathrm{h}_{\mathrm{oe}}=25 \times 10^{-6} \mathrm{~A} / \mathrm{V}$. If the load resistance $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ and sourceresistance is 100Ω, determine the (a) current gain and (b) voltage gain.	4	December 2020 (2015 Scheme)
	h-parameters of a transistor connected in CE configuration is hie $=1000 \Omega$, hre $=10 \times 10^{-4}$; hfe $=50$; hoe $=100 \times 10^{-6}$. If the load resistance R_{L} is $1 \mathrm{~K} \Omega$, find: i) The input impedance ii) Current gain iii) Voltage gain	5	April 2018 (2015 Scheme)
	A CE amplifier has the h-parameters given by $\mathrm{h}_{\mathrm{ie}}=1000 \Omega$, $\mathrm{h}_{\mathrm{re}}=$ $2 \times 10^{-4}, \mathrm{~h}_{\mathrm{fe}}=50, \mathrm{~h}_{\mathrm{oe}}=25 \mu \mathrm{~J}$. If both the load and source resistances are $1 \mathrm{k} \Omega$, determine the (a) current gain (b) voltage gain.	4	July 2017 (2015 Scheme)
	A transistor used in CE connection has the following set of h parameters when the d.c. operating point is $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$; $\mathrm{h}_{\mathrm{ie}}=1700 \Omega ; \mathrm{h}_{\mathrm{re}}=1.3 \times 10-4 ; \mathrm{h}_{\mathrm{fe}}=38 ; \mathrm{h}_{\mathrm{oe}}=6 \times 10^{-6} \mathrm{~J}$. If the a.c. load r_{L} seen by the transistor is $2 \mathrm{~K} \Omega$, find (i) the input impedance (ii) current gain (iii) voltage gain	5	January 2017 (2015 Scheme)

	A CE amplifier has the h-parameters given by $\mathrm{h}_{\mathrm{ie}}=1000 \Omega$, $\mathrm{h}_{\mathrm{re}}=2 * 10^{-4}, \mathrm{~h}_{\mathrm{fe}}=50, \mathrm{~h}_{0 \mathrm{e}}=25 \mu \Omega$. If both the load and source resistances are $1 \mathrm{k} \Omega$, determine the a) current gain and b) voltage gain.	14	Model Question Paper
7.	State the functions of a transistor biasing circuit.	3	December 2020 (2019 Scheme)
8.	With the help of a circuit diagram and relevant equations show that fixed bias is not stable against temperature variations.	3	December 2020 (2019 Scheme)
	Determine the following parameters for the fixed bias configuration of transistor amplifier. (i) I_{B} and I_{C} (ii) V_{CE} and (iii) V_{B} and V_{C}. Assume $V_{B E}=0.7 \mathrm{~V}$. Given $\beta=100$, $\mathrm{Vcc}=16 \mathrm{~V}$, $\mathrm{Rc}=2.2 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{B}}=240 \mathrm{k} \Omega$.	4	May 2019 (2015 Scheme)
9.	What are the factors affecting stability of operating point of a transistor?	2	April 2018 (2015 Scheme)
	What factors are to be considered for selecting the operating point Q for an amplifier?	5	July 2017 (2015 Scheme)
	With neat diagrams, explain DC load line in a transistor and significance of Q-point.	4	December 2020 (2019 Scheme)
	With neat diagrams explain DC load lines in transistor. What is the significance of Q point?	3	Model Question Paper
	Draw the dc and ac load lines for the transistor circuit. Given $\mathrm{R}_{1}=18 \mathrm{~K} \Omega, \mathrm{R}_{2}=8.2 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{C}}=2.2 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{cc}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{E}}=2.7 \mathrm{~K} \Omega$.	5	January 2017 (2015 Scheme)
Module - 2			
10.	Draw a Source follower circuit using JFET and derive the expression for voltage gain.	5	January 2022 (2015 Scheme)
	Draw voltage divider biasing circuit for a JFET and derive the expressions for operating point.	5	January 2022 (2015 Scheme)

	How a JFET common drain amplifier is designed using voltage divider biasing?	5	Model Question Paper
11.	For an N-channel JFET with a voltage divider biasing circuit has the following parameters, $\mathrm{Vp}=-3.8 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{DSs}}=9 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=17 \mathrm{~V}$, $\mathrm{R}_{\mathrm{s}}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{D}}=2 \mathrm{k} \Omega, \mathrm{R}_{1}=500 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=85 \mathrm{k} \Omega$. Calculate the drain current I_{D} and Drain Source Voltage, V_{DS}	5	January 2022 (2015 Scheme)
	For a JFET connected in voltage divider biasing circuit, calculate $\mathrm{I}_{\mathrm{D}}, \mathrm{V}_{\mathrm{DS}}$ and V_{GS} with $\mathrm{V}_{\mathrm{DD}}=24 \mathrm{~V}, \mathrm{R}_{1}=910 \mathrm{k} \Omega, \mathrm{R}_{2}=$ $110 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{D}}=22 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=1.1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{DSS}}=10 \mathrm{~mA}$ and pinch-off voltage of the JFET is 3.5 V .	8	December 2020 (2019 Scheme)
12.	With the help of neat diagrams explain the operation of N -channel depletion type MOSFET.	5	January 2022 (2015 Scheme)
	Explain construction and operation of depletion type metal oxide semiconductor FET with neat diagram.	5	December 2020 (2015 Scheme)
	Explain the construction and operation of Enhancement type metal oxide semiconductor FET with neat diagrams.	3	Model Question Paper
13.	Draw and explain the frequency response characteristics of RC coupled amplifier.	3	December 2020 (2019 Scheme)
	Draw the frequency response of CE amplifier and explain why gain falls at very high frequencies \& very low frequencies.	5	December 2019 (2015 Scheme)
	Why does the gain of a transistor amplifier vary with frequency? Sketch the frequency response of CE amplifier.	5	May 2019 (2015 Scheme)
	Draw the frequency response of an amplifier. What is the significance of gainbandwidth product?	4	April 2018 (2015 Scheme)
	Explain the reasons for reduction of gain at high frequencies of a CE amplifier.	4	December 2017 (2015 Scheme)
	Why does gain of amplifier falls off at low and high frequencies?	5	January 2017 (2015 Scheme)
	Sketch the frequency response curve of RC coupled amplifier and discuss methods to improve gain bandwidth product	7	Model Question Paper
14.	With a neat diagram, explain the constructional features of n channel JFET.	3	December 2020 (2019 Scheme)
	With necessary graphs and equations, explain the transfer characteristics of JFET.	6	December 2020 (2019 Scheme)

	Explain using neat sketches, the operation \& characteristics of a n-channel JFET.	10	December 2019 (2015 Scheme)
	Explain the construction, biasing, operation and characteristics of JFET.	10	December 2018 (2015 Scheme)
	Explain the drain characteristics of JFET and mark the pinch-off	5	July 2017 (2015 Scheme)
		3	Model Question Paper
	Why the gate of FET is always reverse biased? List the parameters of JFET from characteristics.	5	January 2017 (2015 Scheme)
	List the four parameters of JFET. Also obtain the mathematical expression for transconductance.	7	Model Question Paper
	Explain how FET can be used as a voltage controlled resistance.		December 2020 (2015 Scheme)
15.	The data sheet of N channel JFET gives the following details. $\mathrm{I}_{\mathrm{DSS}}=10 \mathrm{~mA}$ and pinch off voltage of -4.8 V .Determine (i) V_{GS} corresponding to drain current of 3.5 mA . (ii) Determine transconductance g_{m} at this drain current.	5	May 2019 (2015 Scheme)
	The datasheet of an N -channel JFET gives the following details $\mathrm{I}_{\mathrm{Dss}}=9 \mathrm{~mA}$ and pinch off voltage of -4.5 V i) At what value of V_{GS} will I_{D} be equal to 3 mA ii) What is its g_{m} at this I_{D} ?	5	January 2017 (2015 Scheme)
	With the help of a neat diagram, explain the small signal model of	4	September 2020 (2015 Scheme)
	FET.	4	December 2018 (2015 Scheme)
16.	Draw the small signal AC equivalent circuit of a Common Drain FET amplifier. Derive the expression for voltage gain, input impedance and output impedance.	5	May 2019 (2015 Scheme)
	Draw the equivalent circuit and derive the expression for (i) input impedance (ii) Current Gain (iii) Voltage gain and (iv) Output impedance of the Common Drain JFET amplifier	8	December 2020 (2019 Scheme)
	Draw and explain high frequency hybrid pi model of common emitter transistor.	6	December 2020 (2019 Scheme)
	Explain the high frequency hybrid pi model of a common emitter transistor.	5	September 2020 (2015 Scheme)

	Draw the Hybrid- π model of BJT and explain significance of each parameters.	5	December 2019 (2015 Scheme)
	Draw and explain high frequency hybrid pi model of common emitter transistor.	5	April 2018 (2015 Scheme)
	Which are the internal capacitances of a BJT? How these are incorporated in the high frequency hybid pi model of BJT?	9	Model Question Paper
Module - 3			
18.	Prove that maximum efficiency of class B power amplifier is 78.5%.	5	December 2020 (2015 Scheme)
	Define conversion efficiency of power amplifier. Prove that the maximum conversion efficiency of a transformer coupled class A amplifier is 50%.	10	December 2020 (2019 Scheme)
	Prove that the class B push pull amplifier has higher efficiency than class A amplifiers.	7	December 2020 (2019 Scheme)
	What is class A operation and derive the expression for conversion efficiency of a transformer coupled class A power amplifier.	5	September 2020 (2015 Scheme)
	Show that the maximum conversion efficiency of class A power amplifier can be increased using transformer coupling.	10	December 2019 (2015 Scheme)
	Why class AB power amplifiers are preferred over Class B operations?	5	May 2019 (2015 Scheme)
	Derive the expression for output power and conversion efficiency of class B push pull power amplifier.	5	$\begin{gathered} \text { May } 2019 \\ \text { (2015 Scheme) } \end{gathered}$
	With necessary diagrams explain the working of class A transformer coupled amplifier and obtain the maximum overall efficiency.	8	December 2018 (2015 Scheme)
	What are the advantages and disadvantages of class A transformer coupled amplifier	2	December 2018 (2015 Scheme)
	Discuss the operation of a class B power amplifier and derive its maximum power conversion efficiency.	6	April 2018 (2015 Scheme)
	Derive the equation for power output and conversion efficiency of a class A series fed amplifier.	10	July 2017 (2015 Scheme)
	Define conversion efficiency of power amplifier. Prove that the maximum conversion efficiency of a series fed class A amplifier is 25%.	14	Model Question Paper

19.	Define the terms collector efficiency and distortion in power amplifiers and determine the a) power rating of transistor b) maximum ac power output and c) maximum collector efficiency of a class A power amplifier having zero signal collector current of 150 mA with collector supply voltage of 6 V .	5	January 2022 (2015 Scheme)
	A transformer coupled class A power amplifier draws a current of 250 mA from a collector supply of 13 V . When no signal is applied to it determine i) Maximum output power ii) Power rating of the transistor iii) Maximum collector efficiency.	4	December 2017 (2015 Scheme)
20.	Explain the principle of feedback in oscillators based on Barkhausen's criterion	5	January 2022 (2015 Scheme)
	What is Barkhausen's criterion? Explain.	3	December 2020 (2019 Scheme)
	State Barkhausen criteria for sinusoidal oscillators.	2	April 2018 (2015 Scheme)
	Explain Barkhausen criteria of sustained oscillation	5	December 2017 (2015 Scheme)
	Explain the Barkhausen Criteria of oscillations.	5	July 2017 (2015 Scheme)
	State the Barkhausen criterion for sinusoidal oscillators and why this must be fulfilled to sustain oscillations?	3	January 2017 (2015 Scheme)
	State and explain Barkhausen's criterion of oscillation.	3	Model Question Paper
21.	Draw the circuit of a transformer coupled transistor amplifier. Compare it with RC coupled amplifier.	5	January 2022 (2015 Scheme)
	Draw the circuit diagram of a RC coupled amplifier. Explain the frequency response curve of RC coupled amplifier. Why does the gain fall off at low and high frequencies?	5	December 2020 (2015 Scheme)
	Draw the circuit of two stage RC coupled amplifier and explain its operation.	7	December 2020 (2019 Scheme)
	Draw the circuit diagram of a two stage direct coupled transistor amplifier. Mention its advantages and application.	5	September 2020 (2015 Scheme)
	Explain the working of a two stage RC coupled amplifier with circuit diagram.	4	April 2018 (2015 Scheme)

26.	Draw the schematic of an amplifier with voltage series feedback and derive expression for closed loop voltage gain.	5	January 2022 (2015 Scheme)
Module - 4			
27.	What are the characteristics of ideal op-amp? Compare it with practical op-amp	5	December 2020 (2015 Scheme)
	List any six characteristics of an ideal operational amplifier.	3	December 2020 (2019 Scheme)
	Explain the concept of virtual short in op-amps.	5	September 2020 (2015 Scheme)
	Compare the characteristics of ideal Op-Amps and practical OpAmps.	5	December 2018 (2015 Scheme)
	What are the properties of an ideal op-amp?	3	$\begin{gathered} \text { April } 2018 \\ \text { (2015 Scheme) } \end{gathered}$
	What are the modes in which an op-amp can be operated?	2	January 2017 (2015 Scheme)
	Compare the Ideal and Practical characteristics of an op-amp	3	Model Question Paper
28.	Why op-amp is not used in open loop for most of the applications?	5	September 2020 (2015 Scheme)
	Discuss the effect of negative feedback in an Op-Amp circuit. Compare the properties of Op-Amp circuit with and without negative feedback.	5	December 2020 (2019 Scheme)
	Show that the closed loop gain of op-amp amplifier can be made independent of its open loop gain.	5	December 2019 (2015 Scheme)
	How do the open-loop voltage gain and closed-loop voltage gain	5	May 2019 (2015 Scheme)
	of Op Amp Circuit? Justify with proper characteristics.	14	Model Question Paper
	Why open loop op-amp configurations are not used for linear applications?	3	December 2017 (2015 Scheme)
29.	Discuss in detail the operation of 3 input summing amplifier using op-amp with suitable diagrams and derive the equation for output voltage in terms of input voltage and circuit components.	5	January 2022 (2015 Scheme)
	Design an adder circuit to get the output voltage as $\mathrm{V}_{\mathrm{O}}=$ $\left[2 \mathrm{~V}_{1}+3 \mathrm{~V}_{2}+4 \mathrm{~V}_{3}\right]$, where $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} are inputs to Op-Amp.	5	December 2020 (2015 Scheme)

| For the op-amp circuit shown in the fig.2 find the output voltage
 equation. | 6 | December 2020
 $(2019$ Scheme) |
| :--- | :--- | :---: | :---: |

	What are the features of instrumentation amplifier? Derive the expression for output voltage of an instrumentation amplifier.	6	December 2018 (2015 Scheme)
32.	Explain the following terms regarding an op-amp (i) CMRR, (ii) Slew rate	4	December 2020 (2015 Scheme)
	How CMRR and Slew rate influence the performance of an opamp?	5	December 2019 (2015 Scheme)
	The datasheet of Op Amp gives the values, Open loop Gain = 175,000 , common-mode gain $=0.18$ and slew rate $=0.5 \mathrm{~V} / \mu \mathrm{s}$. Determine the CMRR in decibels. How long does it take the output voltage of an op-amp to go from -10 V to +10 V ?	5	May 2019 (2015 Scheme)
	A differential amplifier has a gain of 100. A common input of 5 mV is applied to both terminals, which result in an output voltage of 18 mV . Determine (i) common mode gain (ii) CMRR. If the input signals are changed to 50 mV and 100 mV with 1 mV of noise on each input. Find iii) the output signal iv) the noise on the output.	8	December 2020 (2019 Scheme)
	Define the following terms: i) CMRR ii) Slew rate iii) Input bias current (iv) Input offset voltage	8	December 2018 (2015 Scheme)
	Give the typical values of i) CMRR ii) Slew rate iii) Input bias current (iv) Input offset voltage for 741 IC	2	December 2018 (2015 Scheme)
	Write short notes on the following: i) CMRR ii) Slew rate	4	April 2018 (2015 Scheme)
	Explain briefly about the following (i) CMRR (ii) Slew Rate	7	Model Question Paper
	Write short notes on the following: a) CMRR b) Slew rate c) Common mode gain d) Differential mode gain	10	July 2017 (2015 Scheme)
Module - 5			
33.	With waveforms explain the operation of an ideal integrator using op-amp.	5	January 2022 (2015 Scheme)
	Explain how op-amp can be used as a differentiator.	5	December 2020 (2015 Scheme)
	Explain the operation of ideal integrator circuit using op-amp with circuit diagram.	3	December 2020 (2019 Scheme)
	Draw the circuit diagram of an ideal differentiator and derive the expression for output voltage.	4	December 2020 (2019 Scheme)

	Draw the circuit diagram of an ideal differentiator using op-amp with corresponding input and output waveform. Why the circuit cannot be recommended for practical use?	5	May 2019 (2015 Scheme)
	Explain the operation of Op-Amp integrator and differentiator circuits.	6	December 2018 (2015 Scheme)
	Design an integrator that can integrate a square wave of peak to peak voltage 10 V and frequency 1 kHz and draw the output waveform.	5	April 2018 (2015 Scheme)
	What are the limitations of an ideal integrator? Design a circuit which overcome the errors of ideal integrator.	5	January 2017 (2015 Scheme)
	Show the circuit diagram of an Ideal Differentiator using op-amp with corresponding input and output waveform.	3	Model Question Paper
34.	Draw the circuit diagrams for an op-amp used as a Zero crossing detector and as a voltage level detector. Show typical input and output waveforms	5	January 2022 (2015 Scheme)
	Explain the working of zero crossing detector	5	December 2020 (2015 Scheme)
		5	July 2017 (2015 Scheme)
		7	Model Question Paper
	With neat circuit diagram and waveforms, explain zero crossing detector.	3	December 2020 (2019 Scheme)
	Explain the operation of an op-amp comparator with circuit diagram and waveforms	5	September 2020 (2015 Scheme)
	Design a comparator using Op-Amp that compares a sinusoidal signal of 3 V peak with a fixed dc voltage of 1.5 V . Draw corresponding waveforms.	5	May 2019 (2015 Scheme)
35.	Draw and explain the working of a triangular wave generator using op-amp	5	January 2022 (2015 Scheme)
	Explain the operation of square wave generator using op-amp with capacitor and draw the output voltage waveforms.	5	January 2022 (2015 Scheme)
	Draw and explain square wave generator using op-amp.	5	December 2020 (2015 Scheme)
	Draw and explain the operation of a square waveform generator using Op-Amp. Derive the expression for frequency.	10	December 2020 (2019 Scheme)

	Draw the circuit diagram and explain the working of a ramp generator using Op-amp	5	September 2020 (2015 Scheme)
	How triangular wave can be generated using op-amps?	5	December 2019 (2015 Scheme)
	Draw and explain the operation of a triangular wave generator using op-amp.	5	May 2019 (2015 Scheme)
	With necessary diagrams explain the operation of OP-Amp square wave generator.	5	December 2018 (2015 Scheme)
	Explain the working and design of a triangular wave generator circuit with necessary diagrams.	4	December 2018 (2015 Scheme)
	Explain the operation of a square waveform generator using opamp.	5	April 2018 (2015 Scheme)
	Draw and explain the operation of a Triangular waveform generator using op-amp	5	April 2018 (2015 Scheme)
	Draw and explain the operation of a square waveform generator using op-amp.	5	December 2017 (2015 Scheme)
	Explain the operation of a triangular wave generator.	10	July 2017 (2015 Scheme)
	Distinguish between triangular wave and ramp generator using opamp.	5	January 2017 (2015 Scheme)
	Explain the operation of a square wave generator using op-amp.	3	Model Question Paper
36.		5	December 2017 (2015 Scheme)
		5	September 2020 (2015 Scheme)
	Draw the internal diagram of 555 timer IC and explain the function of each components.	5	January 2022 (2015 Scheme)
	Explain the functional block diagram of Timer IC 555.	7	Model Question Paper
	With the help of internal functional diagram, explain the working of astable multivibrator using 555 timer.	10	December 2020 (2015 Scheme)
	Design an astable multivibrator using 555 timer of frequency 200 Hz and duty cycle of 70%.	5	January 2022 (2015 Scheme)

	Differentiate between astable and monostable multivibrator operation with waveforms.	5	December 2020 (2015 Scheme)
	With the help of internal functional diagram, explain how a monostable multivibrator works with use of 555 timer.	8	December 2020 (2019 Scheme)
	With the help of a neat diagram explain the operation of monostable multivibrator using 555 IC.	10	September 2020 (2015 Scheme)
	Draw the internal circuit diagram of 555 IC and explain its operation as astable multivibrator.	10	December 2019 (2015 Scheme)
	Determine the output frequency of the 555 astable multivibrator for $\mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{A}}=2 \mathrm{k} \Omega \& \mathrm{R}_{\mathrm{B}}=200 \mathrm{k} \Omega$.	5	December 2019 (2015 Scheme)
	Draw a monostable multivibrator circuit for a time period of 1 msec with an amplitude of 10 V using 555 timer.	5	$\begin{gathered} \text { May } 2019 \\ \text { (2015 Scheme) } \end{gathered}$
	Design an astable multivibrator using 555 timer for an output wave of 60% duty ratio at 2 kHz frequency.	5	May 2019 (2015 Scheme)
	With the help of internal circuit diagram of IC 555 explain the operation of astable multivibrator. Derive the expression for frequency of oscillation.	10	December 2018 (2015 Scheme)
	With the help of internal circuit diagram of IC 555 explain the operation of a monostable multivibrator.	5	April 2018 (2015 Scheme)
	Design an astable multivibrator using 555 timer to generate an output signal with frequency 5 kHz and 50% duty cycle.	5	April 2018 (2015 Scheme)
	Draw and explain the circuit of IC 555 in Monostable mode with relevant waveforms.	7	December 2017 (2015 Scheme)
	In an astable multivibrator using $555, \mathrm{R}_{\mathrm{B}}=750 \Omega$. Determine the values of R_{A} and C to generate a 1.0 MHz clock that has a duty cycle of 25%.	4	December 2017 (2015 Scheme)
	With the help of internal functional diagram, explain how a monostable multivibrator works with use of 555 timer.	10	July 2017 (2015 Scheme)
	Draw the circuit diagram of an astable-multivibrator using 555 timer to generate the output signal with frequency 2 KHz and duty cycle of 75%.	5	January 2017 (2015 Scheme)
	Design an astable multivibrator using 555 Timer for an output wave of 65% duty ratio at 1 kHz frequency.	7	Model Question Paper
39.	Explain inverting Schmitt trigger circuit with relevant waveforms.	6	December 2020 (2019 Scheme)

	Design a Schmitt trigger circuit with, LTP $=-5 \mathrm{~V}$ and UTP $=$ +5 V . Explain its operation.	5	December 2020 (2015 Scheme)
	Draw the circuit diagram of a Schmitt trigger. Why it is called as a regenerative comparator?	5	December 2019 (2015 Scheme)
	Draw the Schmitt trigger circuit and determine the threshold voltages V_{UT} and V_{LT} in a circuit with two resistors $18 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$, $\mathrm{V}_{\text {ref }}=4 \mathrm{~V}$ and saturation voltage $= \pm 15 \mathrm{~V}$	5	December 2018 (2015 Scheme)
	Explain inverting Schmitt trigger circuit with relevant waveforms.	5	December 2017 (2015 Scheme)
	What is the significance of UTP and LTP in Schmitt trigger circuits? Why is it called as regenerative comparator?	5	April 2018 (2015 Scheme)
	What is the significance of UTP and LTP in Schmitt trigger circuits?	5	January 2017 (2015 Scheme)
		7	Model Question Paper

QUESTION BANK-S3

Subject:Design and Engineering(EST 200)

Sl.No.	Question	Marks	Year
MODULE-1			
1.	Discuss the importance of design constraints?	3	2020(Dec)
2.	Describe how to select the "best possible design" from the generated design alternatives.	3	2020(Dec)
3.	Design two alternatives of a chair suitable for a five-year-old child, and then to narrow down to the best design based on objectives and constraints. Sketch both the designs.	14	2020(Dec)
4.	Identify the objectives, functions and constraints for designing a water level indicator. Illustrate the various stages of the design process. Provide suitable sketches.	14	2020(Dec)
5.	Outline the significance of understanding customer requirements in design process	3	2021(July)
6.	Describe any three constraints that can occur in design process of a lunch box.	3	2021(July)
7.	Explain the design process through designing a handbag for women of age group of 15 to 25 years. Use hand sketches to support your idea.	14	2021(July)
8.	Describe the concept of generating design alternatives and choosing a design through designing a coffee mug with the help of sketches.	14	2021(July)
9.	What are the basic vocabularies in engineering design?	3	2021(Dec)
10.	How to identify the customer requirements of design?	3	2021(Dec)
11.	Find the customer requirements for designing a website for an educational institution. Show how the design objectives were finalized considering the design constraints. Sketch a layout of the website showing dropdown menus.	14	2021(Dec)
12.	Show the designing of an iron box going through the various stages of the design process. Use hand sketches to illustrate the processes.	14	2021(Dec)
MODULE-2			
1.	Discuss how to manage the conflicts in a team executing the design thinking process.	3	2020(Dec)

2.	How does the design thinking approach help engineers in creating innovative and efficient designs?	3	2020(Dec)
3.	Design a water bottle that can be opened with one hand. Illustrate the various stages involved in design thinking. Sketch the final design.	14	2020(Dec)
4.	During the Covid-19 pandemic, people have to wear a mask, but wearing a mask is not comfortable. Empathize about this design problem and arrive at a solution using the design thinking process, so that people can select the level of protection provided by masks according to different situations. Illustrate the solution using sketches.	14	2020(Dec)
5.	Explain convergent questioning in design thinking.	3	2021(July)
6.	Explain how conflict in team environment helps in better design of products.	3	2021(July)
7.	Illustrate the design thinking process through designing a walking stick for elderly people.	14	2021(July)
8.	Design a parachute mechanism for safe landing an egg which is dropped from a height of 3 meters using iterative design thinking process with the help of sketches	14	2021(July)
9.	Describe the iterative process involved in design thinking approach.	3	2021(Dec)
10.	Describe the importance of empathize phase in design thinking.	3	2021(Dec)
11.	Illustrate the design thinking approach for designing a wearable technology for a college student. Describe each stage of the process. Illustrate the solution using sketches.	14	2021(Dec)
12.	Some of the vehicle drivers do not dim the headlights when facing another vehicle at night. Empathize about this design problem and arrive at a solution using the design thinking process. Illustrate the solution using sketches.	14	2021(Dec)
MODULE-3			
1.	Clarify the part of mathematics and physics in the design engineering process.	3	2020(Dec)
2.	What are factors to be considered in preparing technical reports to communicate a design efficiently?	3	2020(Dec)
3.	Design a foldable steel table. Draw the detailed 2D drawings of the same with design detailing, scale drawings and dimensions. Use only hand sketches	14	2020(Dec)
4.	Prepare a technical report for a newly designed website for online training of students with neat diagrams for presenting to a client.	14	2020(Dec)
5.	Describe how prototyping helps in design process	3	2021(July)

6.	Explain any three advantages of communicating designs in writing.	3	2021(July)
7.	Design an office chair and communicate your design using sketches with design detailing, material selection, scale drawings and dimensions.	14	2021(July)
8.	Describe the role of mathematical modelling in design engineering citing an example.	14	2021(July)
9.	How can a design be communicated through engineering sketches and drawings?	3	2021(Dec)
10.	Explain the role of Prototyping in evaluating a Design.	3	2021(Dec)
11.	Design an integrated water bottle with lunch box. Draw the detailed 2D drawings of the same with design detailing, material selection and dimensions. Use only hand sketches.	14	2021(Dec)
12	Prepare a technical report for a newly designed portable ladder with neat sketches for presenting to a client.	14	2021(Dec)
MODULE-4			
1.	Describe the use of value engineering in the design process.	3	2020(Dec)
2.	How does intelligence in nature inspire engineering designs?	3	2020(Dec)
3.	Apply value engineering to a pen, and design a lightweight pen torch. Illustrate the solution using sketches.	14	2020(Dec)
4.	Design waste bins to be kept at bus stops for waste collection enabling source separation. The bin should be theft-resistant and protect the contents of the bin from external weather conditions. Design the bins with ergonomic consideration for waste collection workers. Sketch the design using hand drawings.	14	2020(Dec)
5.	Illustrate advantages of reverse engineering in design	3	2021(July)
6.	Explain bio mimicry in design with an example	3	2021(July)
7.	Illustrate modular design approach for designing of desktop computers.	14	2021(July)
8.	Demonstrate the concept of ergonomics through design of a table lamp	14	2021(July)
9.	Explain the importance of project-based learning in design engineering.	3	2021(Dec)
10.	Discuss the role of life cycle design approach in design decisions.	3	2021(Dec)
11.	Show the development of a nature-inspired design for a fashionable umbrella based on a banana leaf. Use hand sketches to support your arguments	14	2021(Dec)

12.	Develop some design modification for sports utility bag, to improve its functionalities as well as product value. Sketch the design.	14	2021(Dec)
MODULE-5			
1.	How to estimate the cost of a particular design?	3	2020(Dec)
2.	How do ethics play a decisive role in engineering design?	3	2020(Dec)
3.	Design a fan which automatically reduces speed or stops when the temperature reduces during the night for energy conservation. Use hand sketches to support your design.	14	2020(Dec)
4.	Describe how to estimate the cost of a pen and list the various parts. Show how the economics will influence the engineering designs. Use hand sketches to support your arguments.	14	2020(Dec)
5.	Describe ethics to be followed in engineering design.	3	2021(July)
6.	Explain the significance of sustainability in engineering design.	3	2021(July)
7.	Illustrate the changes in design of disposable tea cup in terms of production, use and sustainability.	14	2021(July)
8.	Describe the how to estimate the cost of a table in design stage? Show how economics will influence the engineering designs.	14	2021(July)
9.	What are the factors to be considered for a sustainable design?	3	2021(Dec)
10.	What are design rights, and how can an engineer put it into practice?	3	2021(Dec)
11.	Design a sustainable piping network for reuse of water in a residential building enabling water conservation. Sketch the design.	14	2021(Dec)
12.	Design a door handle with a lock which is easy to use. Use hand sketches and give rationalization for the various features in the design.	14	2021(Dec)

Question Bank
MCN201 - SUSTAINABLE ENGINEERING
Module 1

$\begin{aligned} & \text { SI. } \\ & \text { No } \end{aligned}$	Questions	Mar ks	KU/KTU	Instructio nal Objectives
			(Month/Yea r)	
1	Comment on the challenges for sustainable development in our country and suggest a way to overcome the same.	2	$\begin{gathered} \text { KTU DEC } \\ 2019 \end{gathered}$	
2	Write a short note on Millennium Development Goals.	10	$\begin{gathered} \text { KTU APRIL } \\ \text { 2018, 2020, } \\ 2021 \end{gathered}$	
3	Discuss the evolution of the concept of sustainability. Comment on its relevance in the modern world.	10	$\begin{gathered} \text { KTU DEC } \\ 2019 \end{gathered}$	
4	Explain Clean Development Mechanism	5	$\begin{gathered} \text { KTU DEC } \\ \text { 2017, 2020, } \\ 2021 \end{gathered}$	
5	Explain with an example a technology that has contributed positively to sustainable development.	5	$\begin{gathered} \text { KTU DEC } \\ 2017 \end{gathered}$	
6	Illustrate the nexus between agricultural technology and sustainability.	5	$\begin{gathered} \text { KTU DEC } \\ 2017,2021 \end{gathered}$	
7	Comment on the challenges for sustainable development in our country and suggest a way to overcome the same	5	$\begin{gathered} \text { KTU DEC } \\ 2018 \end{gathered}$	
8	Technology may affect sustainability in positive and negative ways. Give one example each for both cases.	5	$\begin{gathered} \text { KTU APRIL } \\ 2018 \end{gathered}$	
9	Illustrate the three-pillar model of sustainability.	2	$\begin{gathered} \text { KTU MAY } \\ \text { 2019, 2020, } \\ 2021 \end{gathered}$	
10	Justify, giving one reason, why sustainability is an essential component in any developmental	2	$\begin{gathered} \text { KTU DEC } \\ 2018 \end{gathered}$	

	programmes and projects.			

Module 2

$\begin{aligned} & \text { SI. } \\ & \text { No } \end{aligned}$	Questions	M ar ks	KU/KTU	Instructional Objectives
			(Month/Y ear)	
1	Describe carbon credit.	5	$\begin{gathered} \text { KTU APRIL } \\ 2018, \\ 2020 \\ 2021 \end{gathered}$	
2	Give an account of climate change and its effect on environment.	5	$\begin{gathered} \text { KTU APRIL } \\ 2018 \end{gathered}$	
3	Explain the common sources of water pollution and its harmful effects.	5	$\begin{gathered} \text { KTU APRIL } \\ 2018, \\ 2020 \end{gathered}$	
4	Give an account of solid waste management in cities	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	KTU DEC 2019, 2021	
5	Explain the 3R concept in solid waste management?	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	KTU DEC 2017, 2020	
6	Write a note on any one environmental pollution problem and suggest a sustainable solution.	5	$\begin{gathered} \text { KTU DEC } \\ 2018 \end{gathered}$	
7	In the absence of green house effect the surface temperature of earth would not have been suitable for survival of life on earth. Comment on this statement.	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} \text { KTU DEC } \\ 2018 \end{gathered}$	
8	Write short note on the need of environmental sustainability? Also explain the concept of zero waste?	5	KTU DEC 2018, 2020	
9	Briefly describe zero waste concept with a suitable example.	2	$\begin{gathered} \text { KTU MAY } \\ 2019, \\ 2021 \end{gathered}$	

10	What is the concept of industrial ecology? Give an example of a recent product.	3	KTU JAN 2017	

Module 3

SI.	Questions	M ar ks	KU/KTU	Instructional Objectives
			(Month/Y ear)	
1	Describe biomimicry? Give two examples.	5	$\begin{array}{\|c} \text { KTU APRIL } \\ 2018 \end{array}$	
2	Explain the basic concept of Life Cycle Assessment.	10	$\begin{gathered} \text { KTU APRIL } \\ 2018, \\ 2021 \end{gathered}$	
3	Explain the different steps involved in the conduct of Environmental Impact Assessment	5	$\begin{array}{\|c} \text { KTU APRIL } \\ 2018 \end{array}$	
4	Suggest some methods to create public awareness on environmental issues.	5	$\begin{gathered} \text { KTU DEC } \\ 2017 \end{gathered}$	
5	"Nature is the most successful designer and the most brilliant engineer that has ever evolved". Discuss.	10	$\begin{gathered} \text { KTU DEC } \\ 2017 \end{gathered}$	
6	Match the items in the following sets: SetA: \{ISO 14006; ISO 14041; ISO 14048;ISO 14012\} Set B: \{LCA Data Documentation Format; Environmental Auditing qualifying criteria; Eco design guidelines; LCA inventory analysis\}	10	$\begin{gathered} \text { KTU DEC } \\ 2017 \end{gathered}$	
7	Write short notes on ISO 14001 series	5	$\begin{gathered} \text { KTU DEC } \\ 2020 \end{gathered}$	
8	Suppose you are required to do the Life Cycle Assessment of an Electric Vehicle. In the utilisation stage, the assessment must be made for the energy used to drive the vehicle. List any three possible impacts of the Electric Vehicle during the usage stage? Suggest a possible way to reduce the impact during utilisation of the vehicle?	5	$\begin{gathered} \text { KTU DEC } \\ 2018 \end{gathered}$	

9	A) What is Environment Management System (EMS)?	2	KTU DEC 2018, 2021	
10	What is LCA? Illustrate how LCA can be effectively used in the environmental management of industrial production systems.	5	KTU DEC 2018, 2020	
11	What is the concept of industrial ecology? Give an example of a recent product.	5	KTU DEC 2019	

Module 4

$\begin{aligned} & \text { SI. } \\ & \text { No } \end{aligned}$	Questions	M ar ks	KU/KTU	Instructional Objectives
			$\begin{gathered} \text { (Month/Y } \\ \text { ear) } \end{gathered}$	
1	Name three renewable energy sources.	5	KTU APRIL 2018	
2	Mention some of the disadvantages of wind energy.	5	$\begin{gathered} \text { KTU APRIL } \\ 2018 \end{gathered}$	
3	Comment on the statement, "Almost all energy that man uses comes from the Sun".	10	$\begin{gathered} \text { KTU APRIL } \\ 2018 \end{gathered}$	
4	Write notes on: a. Land degradation due to water logging. b. Over exploitation of water.	5	$\begin{gathered} \text { KTU DEC } \\ 2017 \end{gathered}$	
5	Enumerate the impacts of biomass energy on the environment	10	$\begin{aligned} & \text { KTU DEC } \\ & 2017, \\ & 2021 \end{aligned}$	
6	Explain the working of a photovoltaic cell with a neat sketch? What are the steps involved in bio fuel production?	5	$\begin{gathered} \text { KTU DEC } \\ 2018 \end{gathered}$	
7	How can energy be derived from oceans?	5	$\begin{gathered} \text { KTU DEC } \\ 2018 \end{gathered}$	
8	Explain in detail any one methodogy to extract geothermal energy	5	$\begin{gathered} \text { KTU DEC } \\ 2018 \end{gathered}$	

9	Compare and contrast conventional and nonconventional energy with reference to sustainability	5	KTU DEC 2018	
10	What are the methods for increasing energy efficiency of buildings?	5	KTU DEC 2019, 2020	

Module 5

SI	Questions	M ar ks	KU/KTU	Instru ctiona I Objec tives
N			(Month/Ye ar)	
1	Enlist some of the features of sustainable habitat	5	KTU APRIL 2018, 2021	
2	Explain green engineering.	5	$\begin{aligned} & \text { KTU APRIL } \\ & \text { 2018, } 2020 \end{aligned}$	
3	Discuss the elements related to sustainable urbanisation.	${ }^{5} 4$	KTU APRIL 2018, 2021	
4	Discuss any three methods by which you can increase energy efficiency in buildings	5	$\begin{gathered} \text { KTU DEC } \\ 2017 \end{gathered}$	
5	How a green building differs from a conventional building? Compare any five aspects?	5	$\begin{gathered} \text { KTU DEC } \\ 2017, \\ 2019 \end{gathered}$	
6	Explain the criteria for the material selection of sustainable builings?	10	$\begin{gathered} \text { KTU DEC } \\ 2017 \end{gathered}$	
7	Write short note on the green building certification in india	5	$\begin{gathered} \text { KTU DEC } \\ 2018 \end{gathered}$	
8	Write short note on sustainable transportation? What are all the characterestics?	10	$\begin{gathered} \text { KTU DEC } \\ 2019,2021 \end{gathered}$	
9	How can sustainable urbanization and poverty reduction be related?	5	$\begin{gathered} \text { KTU DEC } \\ 2018,2020 \end{gathered}$	

