SEMESTER 6

COMPUTER SCIENCE AND ENGINEERING

COMPILER DESIGN

(Common to CS/CD/CU/CC/CN/CB)

Course Code	PCCST601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Min.
Prerequisites (if any)	PCCST302	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of the compiler construction process through its various phases viz. lexical analysis, parsing, semantic analysis, code generation, and optimization.
- 2. To introduce compiler construction tools like Lex and YACC and use them in lexical analysis and parsing.

Module	Syllabus Description	Contact
No.		Hours
	Introduction - Compiler Structure, Overview of Translation: The Front	
	End; The Optimizer; The Back End.	
	Scanners - Recognizing Words, Regular Expressions, From Regular	
1	Expression to Scanner: FSA (Brush-up only), Implementing Scanners	6
	Hands-on: Recognizing Words with Lex, Regular Expressions in Lex	
	Parsing - Introduction, Expressing Syntax	
	Top-Down Parsing - Transforming A Grammar: Eliminating Left	
	Recursion; Backtrack-free Parsing; Left-Factoring To Eliminate	
2	Backtracking, Recursive Descent Parsers, Table-Driven LL(1) Parsers	10

	Bottom-Up Parsing - Shift Reduce Parser, The LR(1) Parsing	
	Algorithm, Building LR(1) Tables, Errors in the Table Construction,	
	Reducing the Size of LR (1) Tables.	
		16
	Hands-on: Building a calculator with YACC	
	Intermediate Representations: An IR Taxonomy, Graphical IRs -	
3	Syntax-Related Trees, Graphs; Linear IRs - Stack-Machine Code -	
	Three-Address Code - Representing Linear Codes	
	Syntax-Driven Translation: Introduction, Translating Expressions,	
	Translating Control-Flow Statements	
	Code generation: Code Shape - Arithmetic Operators, Boolean and	
	Relational Operators, Control-Flow Constructs (Conditional	
	Execution, Loops and Iteration, Case Statements only), Procedure	
4	Calls	14
	Code Optimization - Introduction, Opportunities for Optimization,	
	Scope Of Optimization	
	Local Optimization: Local Value Numbering, Tree-Height Balancing	
	Regional Optimization: Superlocal Value Numbering, Loop Unrolling	
	Global Optimization: Finding Uninitialized Variables with Live Sets,	
	Global Code Placement	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Use lexical analysis techniques to build a scanner for a given language specification. (Cognitive Knowledge Level: Apply)	К3
CO2	Construct parse trees for input programs using parsing algorithms and detect syntactic errors. (Cognitive Knowledge Level: Apply)	К3
CO3	Develop semantic analysis techniques to check program correctness. (Cognitive Knowledge Level: Apply)	К3
CO4	Build intermediate code representations by applying intermediate code generation techniques. (Cognitive Knowledge Level: Apply)	К3
CO5	Optimize generated code using code optimization strategies to improve performance. (Cognitive Knowledge Level: Apply)	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							2
CO2	3	3	3		3							2
CO3	3	3	3		3							2
CO4	3	3	3		3							2
CO5	3	3	3		3							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering a Compiler	Keith D. Cooper, Linda Torczon	Elsevier Science	3/e, 2023			
2	Lex and YACC	John R. Levine, Tony Mason, Doug Brown	O' Reily	2/e, 1992			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Compilers – Principles Techniques and Tools	Aho A.V., Ravi Sethi and D. Ullman.	Addison Wesley,	2/e, 2010.			
2	Compiler Construction - Principles and Practice	Kenneth C Louden	Thomson Learning	1/e, 2007			
3	Compiler Design in C	Allen Holub	Prentice-Hall software series	1/e, 1990			
4	Modern Compiler Implementation in C	Andrew W. Appel	Cambridge University Press	2/e, 2004			

	Video Links (NPTEL, SWAYAM)				
Module	Link ID				
No.					
1-4	https://archive.nptel.ac.in/courses/106/105/106105190/				

SEMESTER S6
ADVANCED COMPUTING SYSTEMS

Course Code	PCCST602	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Min.
	GAEST203		
Prerequisites (if any)	PBCST404	Course Type	Theory
	PCCST403		

Course Objectives:

- 1. To introduce the computational models prevalent in modern distributed systems.
- 2. To provide the concepts of computer clusters, virtualization, cloud computing, microservices and containers.

Module	Syllabus Description	
No.		
	Distributed System Models and Enabling Technologies:-	
	The age of internet computing: High performance and high throughput	
	computing, Centralized, Parallel, Distributed and Cloud Computing. Design	
1	objectives of HPC and HTC. IoT and Cyber Physical systems.	7
1	Technologies for Network-Based systems:- Multicore CPUs and	/
	Multithreading Technologies. GPU Computing. Virtual Machines.	
	System models for distributed and cloud computing:- Clusters, Grids,	
	P2P Systems, Clouds.	
	Computer Clusters :-	
	Clustering for massive parallelism:- Design objectives, Design Issues -	
	Ensuring high availability, Cluster families. Cluster Architecture. GPU	
	Clusters – Components.	
2	Computer Clusters – Design principles – Single System Image features.	11
	High availability through redundancy. Fault tolerant cluster configurations,	
	checkpoint and recovery techniques.	
	Cluster Job and Resource Management: - Job Scheduling methods, Job	
	management system – administration, job types, migration schemes.	

3	Virtualization:- Introduction, Virtualization at different levels and their comparison. VMM design requirements, OS level virtualization. Virtualization structures and mechanisms. CPU, Memory and I/O Virtualization. Virtual clusters and resource management. Live VM migration steps, migration of memory, files and network resources.	9
4	Cloud Computing, Microservices and Containers:- Cloud Computing and Service models:- Private, Public and Hybrid clouds. Cloud Design objectives and Cost Model. Infrastructure-as-a-Service, Platform-as-a-Service, Software-as-a-Service. Microservices:- — Introduction, advantages and disadvantages. Interprocess Communication — Types of interactions, Protocol, Standard and Message Format, Discovery Service, API Gateway, Service Registry Containers — Comparison of Virtual Machines and Containers. Introduction to Docker. Case Study - Docker Containers — Architecture, Components, Examples.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate the key enabling technologies for network-based systems, including multicore CPUs, multithreading, GPU computing, and virtualization, and how these technologies contribute to the performance and efficiency of distributed systems.	К3
CO2	Use computer cluster architectures, ensuring high availability, fault tolerance, and massive parallelism. They will also learn to implement effective job and resource management strategies within cluster environments.	K4
CO3	Explain various levels of virtualization, including CPU, memory, and I/O virtualization, and understand the design requirements and mechanisms of Virtual Machine Monitors (VMMs).	K2
CO4	Articulate the differences between private, public, and hybrid cloud models, and understand the design objectives and cost considerations associated with different cloud models.	K4
CO5	Explain microservices architecture, its advantages and disadvantages, and the principles of interprocess communication. They will also learn about the role of containers in modern computing, with a specific focus on Docker, including its architecture, components, and practical applications through case studies.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3		3							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Distributed and Cloud Computing: From Parallel Processing to the Internet of Things	Kai Hwang,Geoffrey C. Fox, Jack Dongarra	Morgan Kaufmann	1/e, 2013				
2	Microservices and Containers	Parminder Singh Kocher	Addison-Wesley	1/e, 2018				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Patterns of Distributed Systems	Unmesh Joshi	Pearson Education	1/e, 2024				
2	Cluster Computing, Grid Computing, Cloud and Virtualization	Deepa Kalavikatte	DSK Publisher	1/e, 2020				
3	Cloud and Distributed Computing: Algorithms and Systems	Rajiv Misra, Yashwant Singh Patel	Wiley	1/e, 2020				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc24_cs118/preview						
2	https://onlinecourses.nptel.ac.in/noc24_cs131/preview						

SOFTWARE TESTING

(Common to CS/CA/CM/CD/CR/AM/AD)

Course Code	PECST631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Cultivate proficiency in software testing methodologies and techniques.
- 2. To Foster expertise in software testing tools and technologies.

Module	Syllabus Description	Contact
No.	Synabus Description	
1	Introduction to Software Testing & Automation:- Introduction to Software Testing - Concepts, importance of testing, software quality, and real-world failures (e.g., Ariane 5, Therac 25); Software Testing Processes - Levels of thinking in testing; Testing Terminologies - Verification, validation, fault, error, bug, test cases, and coverage criteria; Types of Testing - Unit, Integration, System, Acceptance, Performance (stress, usability, regression), and Security Testing; Industry Trends - AI in test case automation, Introduction to GenAI in testing; Testing Methods - Black-Box, White-Box, and Grey-Box Testing; Automation in Testing - Introduction to automation tools (e.g., Selenium, Cypress, JUnit); Case Study- Automation of Unit Testing and Mutation Testing using JUnit.	8
2	Unit Testing, Mutation Testing & AI-Driven Automation: Unit Testing- Static and Dynamic Unit Testing, control flow testing, data flow testing, domain testing; Mutation Testing- Mutation operators, mutants, mutation score, and modern mutation testing tools (e.g., Muclipse); JUnit Framework - Automation of unit testing, frameworks for testing in real-world projects; AI in Testing - GenAI for test case	8

	generation and optimization, impact on automation; Industry Tools -	
	Application of AI-driven testing tools in automation and predictive	
	testing; Case Study - Mutation testing using JUnit, AI-enhanced test case	
	automation.	
	Advanced White Box Testing & Security Testing:-	
	Graph Coverage Criteria - Node, edge, and path coverage; prime path	
	and round trip coverage; Data Flow Criteria - du paths, du pairs,	
	subsumption relationships; Graph Coverage for Code - Control flow	
3	graphs (CFGs) for complex structures (e.g., loops, exceptions); Graph	10
3	Coverage for Design Elements - Call graphs, class inheritance testing,	10
	and coupling data-flow pairs; Security Testing - Fundamentals, tools	
	(OWASP, Burp Suite), and their role in protecting modern applications;	
	Case Study - Application of graph based testing and security testing	
	using industry standard tools.	
	Black Box Testing, Grey Box Testing, and Responsive Testing:-	
	Black Box Testing - Input space partitioning, domain testing, functional	
	testing (equivalence class partitioning, boundary value analysis, decision	
	tables, random testing); Grey Box Testing - Introduction, advantages,	
	and methodologies (matrix testing, regression testing, orthogonal array	
	testing); Performance Testing - Network latency testing, browser	
4	compatibility, responsive testing across multiple devices (e.g.,	10
	BrowserStack, LambdaTest); Introduction to PEX - Symbolic execution,	
	parameterized unit testing, symbolic execution trees, and their	
	application; GenAI in Testing - Advanced use cases for predictive and	
	responsive testing across devices and environments; Case Study-	
	Implementation of black-box, grey-box, and responsive testing using	
	PEX and AI-driven tools.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions, each	out of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Demonstrate the ability to apply a range of software testing techniques, including unit testing using JUnit and automation tools.	K2				
CO2	Illustrate using appropriate tools the mutation testing method for a given piece of code to identify hidden defects that can't be detected using other testing methods.	К3				
CO3	Explain and apply graph coverage criteria in terms of control flow and data flow graphs to improve code quality.	К2				
CO4	Demonstrate the importance of black-box approaches in terms of Domain and Functional Testing	К3				
CO5	Illustrate the importance of security, compatibility, and performance testing across devices.	К3				
CO6	Use advanced tools like PEX to perform symbolic execution and optimize test case generation and also leverage AI tools for automated test case prediction and symbolic execution with PEX.	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO6 PO7	PO8	PO9	PO1	PO1	PO1
	101	102	103	104	103	100				0	1	2
CO1	3	3	3									3
CO2	3	3	3	3	3							3
CO3	3	3	3									3
CO4	3	3	3	3								3
CO5	3	3	3		3							3
CO6	3	3	3	3	3							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Introduction to Software Testing.	Paul Ammann, Jeff Offutt	Cambridge University Press	2/e, 2016						
2	Software Testing and Quality Assurance : Theory and Practice	Kshirasagar Naik, Priyadarshi Tripathy	Wiley	1/e, 2008						

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Software Testing	Ron Patten	Pearson	2/e, 2005				
2	Software Testing: A Craftsman's Approach	Paul C. Jorgensen	CRC Press	4/e, 2017				
3	Foundations of Software Testing	Dorothy Graham, Rex Black, Erik van Veenendaal	Cengage	4/e, 2021				
4	The Art of Software Testing	Glenford J. Myers, Tom Badgett, Corey Sandler	Wiley	3/e, 2011				

Video Links (NPTEL, SWAYAM)							
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/106/101/106101163/						
2	https://archive.nptel.ac.in/courses/106/101/106101163/						
3	https://archive.nptel.ac.in/courses/106/101/106101163/						
4	https://archive.nptel.ac.in/courses/106/101/106101163/						

SEMESTER S6 DEEP LEARNING

Course Code	PECST632	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To give the learner an understanding about the foundations of Deep Learning architecture and applications
- **2.** To equip the learner with the necessary skills to set-up neural network architecture and use it for real time problem solution.

Module	Syllabus Description				
No.	Synabus Description	Hours			
1	Neural Networks Multilayer Perceptron, Back-propagation algorithm and its variants Stochastic gradient descent, Curse of Dimensionality, Deep feedforward networks.	8			
2	Machine Learning and Deep learning, Representation Learning, Width and Depth of Neural Networks, Activation Functions: RELU, LRELU, ERELU, Unsupervised Training of Neural Networks, Restricted Boltzmann Machines, Auto Encoders, Deep Learning Applications.	9			
3	CNN-Architectural Overview, Motivation, Layers, Filters, Parameter sharing, Regularization, Popular CNN Architectures: ResNet, Alexnet – Applications. Recurrent Neural Networks, Bidirectional RNNs, Encoder – decoder sequence to sequence architectures – BPTT for training RNN, Long Short Term Memory Networks.	10			
4	Computer Vision - Speech Recognition - Natural language Processing, Case studies in classification, Regression and deep networks. Regularized Autoencoder, stochastic Encoders and Decoders, Contractive Encoders. GAN and its variants	9			

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Construct fundamental neural network architectures and algorithms, including Multilayer Perceptron and Back-propagation	К3				
CO2	Apply advanced techniques such as Stochastic Gradient Descent and address the Curse of Dimensionality in the context of deep learning models.	К3				
CO3	Build various deep learning architectures, including feed-forward networks, Convolutional Neural Networks (CNNs), and their applications in real-world problems.	К3				
CO4	Develop and utilize Recurrent Neural Networks (RNNs) and Long Short-Term Memory Networks (LSTMs) for sequence modeling and natural language processing tasks.	К3				
CO5	Apply unsupervised learning techniques such as Autoencoders and Generative Adversarial Networks (GANs) to solve complex problems in computer vision and speech recognition.	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		3							3
CO2	3	3	2		3							3
CO3	3	3	2		3							3
CO4	3	3	2		3							3
CO5	3	3	2		3							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Deep Learning	Ian Goodfellow, Yoshua Bengio, Aaron Courville	MIT Press	1/e, 2016			
2	Neural Networks and Deep Learning	Michael A. Nielsen	Determination Press,	2/e, 2015			
3	Learning Deep Architectures for AI	Yoshua Bengio	Now Publishers Inc	1/e, 2009			
4	Deep Learning: A Practitioner's Approach	Josh Patterson, Adam Gibson	O'Reilly	1/e, 2017			

	Reference Books							
Sl. No	Title of the Book	Name of the Publisher	Edition and Year					
1	Applied Deep Learning. A Case-based Approach to Understanding Deep Neural Networks	Umberto Michelucci	Apress	1/e, 2018				
2	Deep Learning with Keras	Antonio Gulli, Sujit Pal	Packt	1/e, 2017				
3	Deep Learning with Python	François Chollet	Manning	1/e. 2017				
4	Deep Learning	M Gopal	Pearson	1/e, 2022				
5	The Science of Deep Learning	Iddo Drori	Cambridge Univeristy Press	1/e, 2021				

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://nptel.ac.in/courses/106105215 (Week 4)				
2	https://nptel.ac.in/courses/106105215 (Week 5)				
3	https://nptel.ac.in/courses/106105215 (Week 8)				
4	https://nptel.ac.in/courses/106105215 (Week 10,11 and 12)				

WIRELESS & MOBILE COMPUTING

(Common to CS/CM/AM)

Course Code	PECST633	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To enable the learners to acquire advanced concepts on wireless communication systems and mobile ad-hoc networks.
- **2.** To impart the basics of mobile computing, architecture of wireless transmission systems and next generation networks
- **3.** To Learn the communication protocols, various architectures and security features used in mobile computing.

Module	Syllabus Description	Contact
No.	Synabus Description	
1	Wireless LAN - Advantages, Design goals, Applications, Infrastructure Vs Ad-hoc mode, IEEE 802.11 System Architecture, Protocol Architecture, Physical layer, Medium Access Control layer, HIPERLAN-1, Bluetooth	9
2	Introduction to mobile computing – Functions, Middleware and Gateways, Application and services. Mobile computing architecture – Internet: The Ubiquitous network, Three-tier architecture for Mobile Computing, Design considerations for mobile computing.	8
3	Spread spectrum – Direct sequence, Frequency hopping. Medium Access Control – Space Division Multiple Access (SDMA), Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA). Satellite Systems – Basics, Applications, Geostationary Earth Orbit (GEO), Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Routing, Localization, Handover. Telecommunication Systems – Global System for Mobile Communication (GSM)	9

	Mobile network layer – Mobile Internet Protocol (IP), Dynamic Host Configuration Protocol (DHCP), Mobile ad-hoc networks – Routing,	
	Dynamic Source Routing (DSR), Destination Sequenced Distance Vector	
4	(DSDV), Ad-hoc routing protocols; Mobile transport layer - Traditional	10
	Transmission Control Protocol (TCP), Improvements in Classical TCP;	
	Security issues in mobile computing - Information security, Security	
	techniques and algorithms, Security models.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the various mobile computing applications, services, design considerations and architectures	K2
CO2	Describe the various technology trends for next generation cellular wireless networks and use the spreading concept on data transmission	K2
CO3	Summarize the architecture of various wireless LAN technologies	K2
CO4	Identify the functionalities of mobile network layer & transport layer and various security issues in mobile computing	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Mobile Computing Technology - Application and Service Creation	Asoke K. Talukder, Hasan Ahmad, Roopa R Yavagal	McGraw Hill	2/e, 2010			
2	Mobile Communications	Jochen Schiller	Pearson	2/e, 2000			
3	Fundamentals of 5G Mobile Networks	Jonathan Rodriguez	Wiley	1/e, 2015			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Mobile Computing	Raj Kamal	Oxford University Press	2/e, 2011			
2	Computer Networks,	Andrew S. Tanenbaum	PHI	3/e, 2003			
3	Wireless Communications Principles and Practice	Theodore S. Rappaport	PHI	2/e, 2004			
4	Fundamentals of Networking and Communication	Curt M. White	Cengage learning	7/e, 2013			

	Video Links (NPTEL, SWAYAM)				
No.	No. Link ID				
1	1 https://archive.nptel.ac.in/courses/106/106/106106147/				

ADVANCED DATABASE SYSTEMS

(Common to CS/CM/CR/AM/AD)

Course Code	PECST634	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs: 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To learn the fundamentals of data modeling, query processing, and design in advanced databases and study the working principles of distributed databases.
- 2. To learn emerging databases such as XML and NoSQL.
- **3.** To enable the student to use tools, methodologies, and skills for working successfully with databases in today's global, data driven business model.

Module No.	Syllabus Description			
1	Query Processing and Optimization - Measures of query cost, Algorithms for Selection with cost analysis, Algorithms for Join with cost analysis, Evaluation of expressions; Heuristics in Query Optimization - Optimization of Relational Algebra expressions; Physical Database Design and Tuning - Introduction to Physical Database Design, Overview of Database Tuning, Tuning the Conceptual Schema, Tuning Queries and Views; Impact of Concurrency.	9		
2	Distributed Databases - Distributed Systems, Introduction, Architecture, Distributed Database Concepts, Distributed Data Storage, Distributed Transactions, Commit Protocols, Concurrency Control; Query Processing and Decomposition - Query Processing Objectives, Characterization of Query Processors, Layers of Query Processing, Query Decomposition, Localization of Distributed Data.	9		
3	XML and Non Relational Databases - Introduction to Semi Structured Data and XML Databases, XML Data Model - XSD, XML: DTD and XML	9		

	Schema, XML Presentation, XPath Queries, XQuery; NoSQL Databases -	
	CAP Theorem, Document based; MongoDB Operation - Insert, Update,	
	Delete, Query, Indexing, Application, Replication, Sharding, Deployment;	
	Cassandra - Data Model, Key Space, Table Operations, CRUD Operations.	
	Graph database - Introduction, Data Modelling with Graphs, Building a Graph	
4	Database application, Data Modeling, Predictive Analysis with Graph Theory;	9
4	Depth and Breadth First Search; Path-Finding with Dijkstra's Algorithm;	9
	Graph Theory and Predictive Modeling	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions.

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions, each	out of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply various measures for query processing and optimization, and apply techniques to tune database performance.	К3
CO2	Explain the architecture and fundamental concepts of distributed databases.	K2
CO3	Utilize semi-structured data, XML, and XML queries for effective data management	К3
CO4	Utilize NoSQL database systems to manage and manipulate data in real-time applications	К3
CO5	Develop advanced skills in graph database concepts, covering data modeling, application building, and the application of graph theory for predictive analysis and modeling.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	DO1	DO3	DO2	DO4	DO5	DO(DO7	DOO	PO9	PO1	PO1	PO1								
	PO1	PO2	PO3	PO4	PO5	100	PO7	PO8	109	0	1	2								
CO1	3	2	2									3								
CO2	3	2	2									3								
CO3	3	2	2		2							3								
CO4	3	2	2		2							3								
CO5	3	3	3		3							3								

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year				
1	Fundamentals of Database Systems	Ramez Elmasri, Shamkant B. Navathe	Pearson	7/e, 2017				
2	Database System Concepts	A. Silberschatz, H. Korth, S. Sudarshan	McGraw-Hill	7/e, 2021				
3	Database Management Systems	R. Ramakrishnan, J. Gehrke	McGraw Hill	3/e, 2018				
4	Graph Databases	Ian Robinson, Jim Webber & Emil Eifrem	O'Reilly	2/e, 2015				
5	Database Systems	T. M. Connolly, C. Begg	Pearson	6/e, 2019				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Principles of Database Management: Practical Guide to Storing, Managing and Analyzing Big and Small Data	W. Lemahieu, S. vanden Broucke and B. Baesens	Cambridge University Press	1/e, 2018				
2	Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems	M. Kleppmann	O'Reilly	1,e2017				
3	Database Systems: The Complete Book	Hector Garcia-Molina Jeffrey D. Ullman Jennifer Widom	Prentice Hall	2/e, 2009				
4	Next generation databases: NoSQL, newSQL, and big data. Apres.	Guy Harrison	Apress	1/e, 2015				
5	Foundations of Multidimensional and Metric Data Structures	Hanan Samet	Morgan Kaufmann	1/e, 2006				

	Video Links (NPTEL, SWAYAM)						
Module No. Link ID							
1	CAP Theorem https://nptel.ac.in/courses/106104189						
2	Advanced database Queries https://archive.nptel.ac.in/courses/106/104/106104021						
3	Database design https://archive.nptel.ac.in/courses/106106093/						
4	Introduction to modern application development https://archive.nptel.ac.in/courses/106/106/106106156						

DIGITAL IMAGE PROCESSING

(Common to CS/CM/CA/AM)

Course Code	PECST636	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide foundational concepts of digital image representation, processing, and analysis, including image digitization, color theory, and various data structures, to effectively manipulate and analyze digital images.
- 2. To help the learner develop the ability to implement advanced image processing techniques, such as image segmentation, edge detection, and image compression, while critically evaluating the performance and quality of these methods in practical applications.

Module	Syllabus Description			
No.	Synabus Description			
1	The image, its representation and properties - Image representations, Image digitization, Sampling, Quantization, Digital image properties, Metric and topological properties of digital images, Histograms, Entropy, Visual perception of the image, Image quality, Noise in images; Color images - Physics of color, Color perceived by humans, Color spaces, Color constancy; Data structures for image analysis - Levels of image data representation, Traditional image data structures - matrices, Chains, Topological data structures - Relational structures, Hierarchical Data Structures, Pyramids, Quadtrees, Other pyramidal structures.	9		
2	Image pre-processing - Pixel brightness transformations-, Position-dependent brightness correction, Gray-scale transformation, Geometric Transformations - Pixel coordinate transformations, Brightness interpolation. Local pre-processing, Image Smoothing, Edge detectors, Zero-crossings the second derivative, Scale in Image Processing, Canny Edge Detection,			

	Parametric Edge Models, Edges Multi-spectral images,, Line detection by				
	local pre-processing operators, Detection of corners(interest points),				
	Image Restoration - Degradations that are easy to restore, Inverse Filtering,				
	Wiener Filtering				
	Image Segmentation - Thresholding, Threshold Detection Methods- Optimal				
	thresholding, Multi-spectral thresholding, Edge-based segmentation, Edge				
	Image Thresholding, Edge Relaxation, Border Tracing, Border Detection As				
	Graph Searching, Border Detection As Dynamic Programming, Hough				
3	3 Transforms, Border Detection Using Border location information,				
	Region construction from borders, Region-based segmentation - Region				
	merging, Region Splitting - Splitting And Merging, Watershed segmentation				
	Matching, Template Matching, Control Strategies Templating, Evaluation				
	Issues In Segmentation				
	Image Transforms - Discrete Cosine Transform, Wavelet transform, Eigen-				
	analysis, Singular value decomposition, Principal component analysis Radon				
	Transform;				
	Image Compression - Image data Properties, Discrete Image Transforms In				
4	Image data compression, Predictive compression methods, Vector	10			
	quantization, Hierarchical and Progressive Compression methods,				
	Comparison Of Compression Methods, JPEG and MPEG image compression				
	JPEG still image compression, JPEG-2000 compression, MPEG full-motion				
	video compression.				

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A ssignment/	Internal	Internal	
Attendance	Assignment/ Microproject Examination-1		Examination- 2	Total
	Microproject	(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 Marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

		Bloom's				
	Course Outcome					
		Level (KL)				
CO1	Understand the properties of monochrome and colour images and the data structures for image analysis	K2				
CO2	Apply different preprocessing techniques to visualize image enhancement	К3				
СОЗ	Understand the concept of image segmentation and various techniques used for this.	K2				
CO4	Understand the various transforms used for image processing	K2				
CO5	Understand the concept of image compression and apply various image compression techniques.	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3	3								2
CO3	3	3	3	3								2
CO4	3	3	3	3								2
CO5	3	3	3	3								2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Image Processing, Analysis and Machine Vision	Milan Sonka, Vaclav Hlavac, Roger Boyle	Cengage	4/e, 2015			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamental of Digital Image Processing	Anil K. Jain	Pearson	1/e, 2015				
2	Digital image Processing	Ralph Gonzalez, Richard Woods	Pearson	4/e, 2018				
3	Digital Image Processing	S Jayaraman, S Esakkirajan, T Veerakumar	McGraw Hill	2/e, 2020				

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://archive.nptel.ac.in/courses/117/105/117105135/					
2	https://archive.nptel.ac.in/courses/106/105/106105032/					

FUNDAMENTALS OF CRYPTOGRAPHY

(Common to CS/CM/CR/AM/AD)

Course Code	PECST637	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To develop a foundational understanding of mathematical concepts in cryptography,
- 2. To gain comprehensive knowledge of cryptographic methods.

Module	Syllabus Description	Contact
No.	Syllabus Description	Hours
	Introduction to Number Theory - Divisibility and The Division Algorithm,	
	The Euclidean Algorithm, Modular Arithmetic : The Modulus, Properties	
	of Congruences, Modular Arithmetic Operations, The Extended Euclidean	
1	Algorithm, Primitive Roots, Existence of Primitive Roots for Primes,	10
1	Fermat's Theorem, Euler's Totient Function,	10
	Euler's Theorem, Testing for Primality : Miller-Rabin Algorithm, A	
	Deterministic Primality Algorithm, Discrete Logarithms, Chinese	
	Remainder Theorem.	
	Security Attacks; Security Services; Security Mechanisms; Fundamental	
2	Security Design Principles; Cryptography - Symmetric Cipher Model,	8
2	Substitution Techniques, Transposition techniques; Traditional Block	O
	Cipher Structure.	
	The Data Encryption Standard - DES Encryption & Decryption, Avalanche	
2	Effect, Strength of DES; Advanced Encryption Standard - AES Structure;	10
3	Stream Ciphers; RC4; Principles of Public-Key Cryptosystems - Public-	10
	Key Cryptosystems, Applications for Public-Key Cryptosystems,	

	Requirements for Public-Key Cryptography,	
	The RSA Algorithm, Description of the Algorithm; Diffie-Hellman Key	
	Exchange	
	Cryptographic Hash Functions - Applications of Cryptographic Hash	
4	Functions, Secure Hash Algorithm (SHA), SHA-3; MAC; MD5; Digital	o
4	Signatures.; Key Management and Distribution - Symmetric Key	o
	Distribution; X.509 certificates; PKI.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance		Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
	5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply number theory concepts in data security	К3
CO2	Explain the cryptographic concepts and apply the classical encryption methods for data confidentiality	К3
CO3	Describe the symmetric and asymmetric ciphers used for information security	K2
CO4	Explain the algorithms used for authentication and integrity	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2								2
CO2	3	3	3	2								2
CO3	3	3	3									2
CO4	3	3	3									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Cryptography & Network Security: Principles and practice	William Stallings	Pearson	7/e, 2017			

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Cryptography & Network Security	Behrouz A. Forouzan	McGraw Hill	3/E, 2007					
2	Security in Computing	Charles P. Pfleeger, Shari L. Pfleeger, Jonathan Margulies	Prentice Hall	5/e, 2015					
3	A Classical Introduction to Cryptography: Applications for Communications Security	S. Vaudenay	Springer	1/e, 2009					
4	Introduction to Cryptography: Principles and Applications	H. Delfs, H. Knebl	Springer- Verlag	1/E, 2002					

	Video Links (NPTEL, SWAYAM)						
Module	Link ID						
No.							
1	https://archive.nptel.ac.in/courses/111/101/111101137/						
2	2 https://nptel/courses/video/106105031/L17.html						
3	https://onlinecourses.nptel.ac.in/noc22_cs90/preview						

QUANTUM COMPUTING

(Common to CS/CM/CR/AD/AM)

Course Code	PECST638	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To give an understanding of quantum computing against classical computing.
- **2.** To understand fundamental principles of quantum computing, quantum algorithms and quantum information.

Module	Syllabus Description	Contact
No.	Synabus Description	
1	Review of Basics Concepts Review of linear algebra, Principles of quantum mechanics, Review of Information theory, Review of Theory of Computation. [Text 1 - Ch 1, 2; Text 2, Ch 11.1, 11.2]	9
2	Introduction to Quantum Information Qubit – Bloch sphere representation, Multiple qubit states, Quantum logic gates – single qubit and multi-qubit, Quantum circuits, Density matrix, Quantum entanglement. [Text 1 - Ch 3, 4; Text 2 - Ch 4]	9
3	Quantum Algorithms: - Simple Quantum Algorithms, Quantum Integral Transforms, Grover's Search Algorithm and Shor's Factorization Algorithm. [Text 1 - Ch 5,6,7,8]	9
4	Quantum Communication: - Von Neumann entropy, Holevo Bound, Data compression, Classical information over noisy quantum channels, Quantum information over noisy	9

quantum channels, Quantum Key Distribution, Quantum Communication	
protocols	
[Text 2 - Ch 11.3, Ch 12.1 - 12.5]	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1 (Written)	Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	CO
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course, students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the concept of quantum computing against classical computing.	K2
CO2	Illustrate various quantum computing algorithms.	K2
CO3	Explain the latest quantum communication & protocols.	K2
CO4	Experiment with new algorithms and protocols for quantum computing.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3									2
CO2	3	2	3									2
CO3	3	2	3									2
CO4	3	2	3									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
	Quantum Computing:	Mikio Nakahara				
1	From Linear Algebra to	Tetsuo Ohmi	CRC Press	1/e, 2008		
	Physical Realizations					
2	Quantum Computation and	Michael A. Nielsen &	Cambridge University	1/e, 2010		
2	Quantum Information	Isaac L. Chuang	Press	1/6, 2010		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Quantum Computing for Programmers	Robert Hundt	Cambridge University Press	1/e, 2022			
2	Quantum Computing for Everyone	Chris Bernhardt	MIT Press	1/e, 2020			
3	An Introduction to Practical Quantum Key Distribution [paper]	Omar Amer Vaibhav Garg Walter O. Krawec	IEEE Aerospace and Electronic Systems Magazine	March 2021			
4	Quantum communication [paper]	Nicolas Gisin & Rob Thew	Nature Photonics	March 2007			

	Video Links (NPTEL, SWAYAM)
No.	Link ID
1	https://archive.nptel.ac.in/courses/106/106/106106232/
2	https://archive.nptel.ac.in/noc/courses/noc19/SEM2/noc19-cy31/

RANDOMIZED ALGORITHMS

Course Code	PECST639	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GAMAT301 PCCST302 PCCST303 PCCST502	Course Type	Theory

Course Objectives:

- 1. To equip with the knowledge and skills to design and analyze algorithms that leverage randomness to improve performance, solve complex problems, and achieve better average-case or worst-case guarantees.
- 2. To provide a deep understanding of advanced randomization techniques and their applications in various domains, including hashing, graph algorithms, probabilistic method, and complexity theory.

Module	Syllabus Description	Contact	
No.	Synabus Description		
1	Basics of Randomization - Introduction to randomized algorithms, Probabilistic analysis and expectations, Benefits and applications of randomization. (Text 1 - Chapter 1) Probability Review - Basic probability theory, Random variables and distributions, Linearity of expectation. (Text 2 - Chapters 1, 2) Basic Randomized Algorithms - Randomized quicksort, Randomized selection, Randomized data structures. (Text 3 - Sections 5.3, 9.2)	9	
2	Randomized Graph Algorithms - Randomized algorithms for graph problems, Minimum cut problems, Randomized algorithms for network flows. (Text 1 - Chapters 5, 6) Hashing and Randomized Data Structures - Universal and perfect hashing, Skip lists, Bloom filters. (Text 3 - Chapter 11)	9	

	Markov Chains and Random Walks - Introduction to Markov chains,	
	Random walks on graphs, Applications in randomized algorithms. (Text 2 - Chapters 6, 7)	
	The Probabilistic Method - Basics of the probabilistic method, Linearity of	
	expectation, First and second-moment methods. (Text 4 - Chapters 1, 2)	
3	Chernoff Bounds and Concentration Inequalities - Markov's inequality,	9
	Chebyshev's inequality, Chernoff bounds, Applications of concentration	
	inequalities. (Text 1 - Chapter 4)	
	Randomized Rounding and Martingales - Randomized rounding techniques,	
	Applications in approximation algorithms, Introduction to martingales,	
4	Azuma's inequality. (Text 5 - Chapter 14)	9
4	Randomized Complexity Classes - RP, ZPP, and BPP, Relationships	9
	between complexity classes, Amplification and derandomization techniques	
	(Text 6 - Chapter 7)	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate a strong understanding of the basics of randomized algorithms, including probabilistic analysis, expectations, and the benefits of randomization	К3
CO2	Illustrate basic randomized algorithms, such as randomized quicksort, selection, and data structures, and evaluate their performance against deterministic alternatives.	К3
CO3	Apply advanced randomized techniques, including randomized graph algorithms, hashing, and Markov chains, to address complex graph and data structure problems.	К3
CO4	Show expertise in probabilistic methods, including Chernoff bounds, concentration inequalities, and randomized rounding, and use these methods to solve approximation and analysis problems in algorithms.	К3
CO5	Understand and apply concepts related to randomized complexity classes, such as RP, ZPP, and BPP, and explore amplification and derandomization techniques.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3									2
CO5	3	3	3									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Randomized Algorithms	Rajeev Motwani and Prabhakar Raghavan	Cambridge University Press	1/e, 2004	
2	Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis	Michael Mitzenmacher and Eli Upfal	Cambridge University Press	3/e, 2017	
3	Introduction to Algorithms	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein	The MIT Press	4/e, 2023	
4	The Probabilistic Method	Noga Alon and Joel H. Spencer	Wiley-Blackwell	4/e 2016	
5	Approximation Algorithms	Vijay V. Vazirani	Springer Nature (SIE)	2/e, 2013	
6	Computational Complexity: A Modern Approach	Sanjeev Arora and Boaz Barak	Cambridge University Press	1/e, 2019	

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Concentration of Measure for the analysis of randomized algorithms	Devdatt Dubhashi and Alessandro Panconesi	Cambridge University Press	1/e, 2012	
2	The design of approximation algorithms	David Williamson and David Shmoys	Cambridge University Press	1/e, 2011	
3	Algorithms	Robert Sedgewick and Kevin Wayne	Addison-Wesley	4/e, 2023	

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/103/106103187/				

CLOUD COMPUTING

(Common to CS/CA/CM/AM)

Course Code	PECST635	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To learn fundamentals of cloud and configure cloud environments, deploy virtual machines, and work with containerization tools, gaining practical skills.
- **2.** To learn to identify and address common security threats in cloud environments, implementing best practices to ensure the safety and compliance of applications.

Module No.	Syllabus Description		
1	Introduction - Limitations of Traditional Computing & solution, Three Layers of Computing, Factors behind Cloud Service Adoption; Evolution and Enabling Technologies of Cloud; Benefits and Challenges; [Text 2] Fundamental Concepts and Models - Roles and Boundaries, Cloud Characteristics, Cloud Delivery Models, Cloud Deployment Models; [Text 1] Introduction to Cloud Providers (AWS, Azure, Google Cloud). **Handson* - Cloud Account Setup and Virtual Machine Deployment - Create accounts on a cloud provider and deploy virtual machine instances, and document the process and inferences.	8	
2	Cloud-Enabling Technology - Networks and Internet Architecture, Cloud Data Center Technology, Modern Virtualization, Multitenant Technology, Service Technology and Service APIs; Understanding Containerization - Influencers, Fundamental Virtualization and Containerization, Understanding Containers, Understanding Container Images, Multi- Container Types.[Text 1]	10	

	Handson - Hypervisor and Containers installation - Install hypervisors and	
	deploy VMs on local machines. Install any container platform and deploy	
	applications.	
	Resource Management - Resource Pooling, Sharing, Provisioning; Scaling	
	in Cloud and the Strategies; Capacity Planning in Cloud Computing; Storage	
	and File System - Challenges; Cloud Native File System, Deployment	
3	models, Storage Types, Popular Cloud Storages. High performance	9
	Computing Models.[Text 2]	
	<i>Handson</i> - Use Map-reduce to implement basic big data applications such as	
	word count.	
	Understanding Cloud Security - Basic Security Terminology, Basic Threat	
	Terminology, Threat Agents, Common Threats; Other Considerations -	
	Flawed Implementations, Security Policy Disparity, Contracts, Risk	7
4	Management.[Text 1]	7
	Handson: Identify possible attacks of any selected cloud applications and	
	suggest/implement solutions/policies for mitigation.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Ways of assessing at

- 1. Analyze level Analyze performance of traditional models (Hardware, Application, Computing / security models) against that in the cloud.
- 2. Evaluate level Derive conclusions on the cloud programming / computing / security models based on standard performance evaluation criteria.

End Semester Examination Marks (ESE):

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 3 subdivisions.	60
each carrying 3 marks	Each question carries 9 marks.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Evaluate the limitations of traditional computing models and recognize the factors driving cloud service adoption and compare between various cloud delivery and deployment models.	K5
CO2	Demonstrate proficiency in cloud-enabling technologies, including modern virtualization and containerization	К3
CO3	Examine the resource management within the cloud, including resource pooling, scaling strategies, and storage management and utilize tools like MapReduce for processing big data applications.	K4
CO4	Identify potential security threats in cloud environments and apply appropriate security measures to mitigate these risks.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							3
CO2	3	3	3	3	2							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Cloud Computing : Concepts, Technology, Security, and Architecture	Thomas Erl	Pearson	2/e, 2023				
2	Cloud Computing	Sandeep Bhowmik	Cambridge University Press	1/e, 2017				

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Cloud Computing : Theory and Practice	Dan C. Marinescu	Morgan Kaufman	3/e, 2023	
2	Cloud Computing: A Hands-On Approach	Arshdeep Bahga and Vijay Madisetti	Universities Press	1/e, 2014	
3	Mastering Cloud Computing	Rajkumar Buyya, Christian Vecchiola S.Thamarai Selvi	Morgan Kaufman	1/e, 2013	
4	Cloud Computing : A Practical Approach	Anthony T. Velte, Toby J. Velte, Robert Elsenpeter	McGraw Hill	1/e, 2010	

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/105/106105167/				

MOBILE APPLICATION DEVELOPMENT

(Common to CS/CA/CB/CN)

Course Code	PECST695	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- To equip students with a thorough understanding of mobile application development fundamentals, including platforms (iOS and Android) and architectures (MVC, MVVM, BLoC).
- 2. To instill proficiency in Flutter and Dart: Enable students to use Flutter effectively for crossplatform development and the Dart programming language to create responsive, user-friendly mobile applications.
- **3.** To prepare students for real-world scenarios by teaching app security, testing, CI/CD, and deployment processes, culminating in the development and deployment of a complete mobile application project.

Module No.	Syllabus Description			
1	Fundamentals of Mobile Application Development: Introduction to Mobile Application Development, Overview of Mobile Platforms: iOS and Android, Introduction to Flutter: History, Features, and Benefits, Setting Up the Flutter Development Environment, Mobile App Architectures (MVC, MVVM, and BLoC), Basics of Dart Programming Language, Introduction to Git and Version Control Assignments/Projects: Set up the Flutter environment and create a simple "Hello World"	9		

	application. (Use Git: cloning, committing, pushing, and pulling)	
	Milestone 1: Develop a basic app with a simple UI and basic functionality.	
	User Interface Design and User Experience:	
2	Principles of Mobile UI/UX Design, Designing Responsive UIs with Flutter, Using Flutter Widgets: StatelessWidget and StatefulWidget, Layouts in Flutter: Container, Column, Row, Stack, Navigation and Routing in Flutter, Customizing UI with Themes and Styles, Introduction to Material Design and Cupertino Widgets	
_	Assignments/Projects:	
	Design and implement a user interface using Flutter widgets.	
	Milestone 2: Enhance the project from Module 1 with a multi-screen UI, navigation, and customized themes.	
	Advanced Flutter Development:	
	State Management in Flutter: Provider, Riverpod, and BLoC	
	Networking in Flutter: HTTP Requests, JSON Parsing, RESTful APIs	
	Data Persistence: SQLite, SharedPreferences, Hive	
	Asynchronous Programming with Dart: Futures, async/await, and Streams	
3	Integrating Device Features: Camera, GPS, Sensors	9
	Working with Firebase: Authentication, Firestore, Cloud Functions	
	Assignments/Projects:	
	Develop an app with state management and data persistence.	
	Milestone 3: Enhance the project with state management, data persistence, and integration with a RESTful API or Firebase.	
	Industry Practices and App Deployment:	
4	Advanced UI Components and Animations, App Security Best Practices, Testing and Debugging Flutter Applications, Continuous Integration/Continuous Deployment (CI/CD) with Flutter, Publishing Apps to Google Play Store and Apple App Store, Industry Trends and Future of Mobile Development with Flutter	9
	Assignments/Projects:	
	Add advanced UI components and animations to the project, Implement	

security measures in the Flutter application, Conduct thorough testing and debugging of the developed app.

Milestone 4: Complete the project, integrating all features and preparing it for deployment.

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Analyze

Key Actions: Differentiate, Organize, Attribute

Metrics and Examples:

1. Code Review and Refactoring:

- a. Task: Students are given a piece of code to analyze and refactor for better performance or readability.
- b. Metric: Ability to identify inefficient or redundant code and provide optimized solutions.

Example: Analyzing a complex UI widget tree and reorganizing it for better performance and maintainability.

2. Design Pattern Identification:

- a. Task: Students are asked to identify and apply appropriate design patterns for given scenarios.
- b. Metric: Correct identification and application of design patterns like Singleton, Factory, or BLoC in their projects.

Example: Analyzing an app's state management needs and choosing between Provider and BLoC patterns.

3. Bug Diagnosis:

a. Task: Students are given a buggy piece of code to analyze and debug.

b. Metric: Ability to use debugging tools and techniques to locate and fix bugs.

Example: Analyzing asynchronous code to identify and resolve race conditions or memory

leaks.

Evaluate

Key Actions: Check, Critique, Judge

Metrics and Examples:

1. Code Quality Assessment:

a. Task: Students review each other's code and provide constructive feedback.

b. Metric: Ability to critically evaluate code quality based on readability, efficiency, and

adherence to best practices.

Example: Peer review sessions where students critique the structure and efficiency of each

other's Flutter code.

2. UI/UX Design Evaluation:

a. Task: Students evaluate the user interface and user experience of their peers'

applications.

b. Metric: Ability to judge UI/UX designs based on usability, accessibility, and

aesthetics.

Example: Conducting usability testing sessions and providing feedback on navigation flow,

design consistency, and user engagement.

3. Project Presentation and Defense:

a. Task: Students present their projects and justify their design and implementation

choices

b. Metric: Ability to articulate design decisions, defend architectural choices, and

respond to critical questions.

Example: End-of-module presentations where students explain their choice of state

management, navigation strategy, and performance optimizations.

Integration into the Syllabus - Example Use Cases

Basic Mobile Application Development

- Analyze: Evaluate different mobile app architectures (MVC, MVVM, BLoC) and choose the best fit for a given project scenario.
- Evaluate: Critically assess the setup and configuration of the Flutter development environment for potential improvements.

User Interface Design and User Experience

- Analyze: Analyze the responsiveness and usability of designed UIs, identifying potential bottlenecks.
- Evaluate: Critique the effectiveness of navigation and routing within the app.

Advanced Flutter Development

- Analyze: Break down the integration process of advanced features (state management, networking) and evaluate their impact on app performance.
- Evaluate: Judge the robustness of data persistence solutions and asynchronous programming implementations.

Industry Practices and App Deployment

- Analyze: Analyze the app's security measures and their effectiveness in protecting user data.
- Evaluate: Evaluate the completeness and readiness of the app for deployment based on industry standards and best practices.

Example Evaluation Rubrics

Analyze:

Criterion	Excellent (4)	Good (3)	Satisfactory (2)	Needs Improvement (1)
Identification of Code Inefficiencies	Identifies all inefficiencies and provides optimal solutions	Identifies most inefficiencies and provides good solutions	Identifies some inefficiencies with basic solutions	Struggles to identify inefficiencies or provide solutions
Application of Design Patterns	Correctly applies design patterns with a clear rationale	Applies design patterns with minor issues	Applies design patterns with significant issues	Incorrectly applies or fails to apply design patterns

Evaluate:

Criterion	Excellent (4)	Good (3)	Satisfactory (2)	Needs Improvement (1)
Code Quality Assessment	Provides thorough, insightful feedback with constructive suggestions	Provides good feedback with some constructive suggestions	Provides basic feedback with limited constructive suggestions	Provides minimal or unhelpful feedback
UI/UX Design Evaluation	Provides detailed critique with actionable insights	Provides good critique with some actionable insights	Provides basic critique with limited actionable insights	Provides minimal or no critique

End Semester Examination Marks (ESE):

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 3 sub divisions.	60
each carrying 3 marks	Each question carries 9 marks.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain mobile application development using Flutter and different mobile platforms.	K2
CO2	Apply principles of effective mobile UI/UX design, Create responsive user interfaces using Flutter features.	К3
CO3	Experiment effectively with state in Flutter application, networking and data persistence.	K4
CO4	Apply security best practices in mobile app development, test, and debug Flutter applications effectively.	K5
CO5	Set up CI/CD pipelines for Flutter projects and deploy mobile apps to Google Play Store and Apple App Store.	K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Flutter Cookbook	Simone Alessandria	Packt	2/e, 2023						
2	Flutter for Beginners	Alessandro Biessek	Packt	1/e, 2019						

Reference Books								
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year				
1	Flutter in Action	Eric Windmill	Manning	1/e, 2019				
2	Flutter and Dart: Up and Running	Deepti Chopra, Roopal Khurana	ВРВ	1/e, 2023				
3	Managing State in Flutter Pragmatically	Waleed Arshad	Packt	1/e, 2021				
4	Ultimate Flutter Handbook	Lahiru Rajeendra Mahagamage	Orange House	1/e, 2023				

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://www.youtube.com/watch?v=VPvVD8t02U8				

FUNDAMENTALS OF CYBER SECURITY

Course Code	PBCST604	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To teach the security terminologies along with familiarization of web-based attacks and the vulnerability assessment tools for real time practices
- 2. To help learners to perform network analysis and learns the measures to handle security bleaches at the system level

Module No.	Syllabus Description					
1	Information Security Introduction, Threats to Information Systems, Cyber Security and Security risk analysis, Information Gathering- Reconnaissance, Reco-ng, Software Vulnerabilities- Buffer Overflow, Stack Overflow, Format String, Vulnerability Assessment and Penetration Testing- Burpsuite, Metasploit.	10				
2	Web Security Web Attacks- SQL Injection Attacks, Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), Domain Name System- Security Issues with DNS, DNS attacks, DNSSEC, OWASP ZAP, WebGoat, Damn Vulnerable Web Application (DVWA), Website Mirroring, HTTRACK, Email Security-Email risks, Protocols, Operating safely when using email.	12				
3	Network Security: Network Security Terminologies, DoS, DDoS, ARP Spoofing and Session	12				

	Hijacking, Capturing the Network Traffic- Promiscuous Mode, Flooding, DHCP Redirection, Redirection and Interception with ICMP. Port Scanning-TCP and UDP, Port Scanning Tools- Nmap, SuperScan, Wireshark-Analysing and Filtering Traffic	
4	System Security: Windows Security: Attacks against windows system, Installing applications, Authentication and access control, Upgrades and Patches, Operating Windows safely, Windows Defender Firewall. Linux Security- Attacks in Linux system, Physical security, Controlling the configuration, Authentication and access control, Upgrades and Patches, Operating Linux safely, SELinux.	10

Suggestion on Project Topics

Network Traffic Monitoring and Analysis using Wireshark:

- Development: Capture network traffic in a controlled environment using Wireshark.
- Security Analysis & Fixing: Analyze captured traffic to identify potential vulnerabilities (e.g., plaintext passwords) and recommend security enhancements.

OWASP ZAP (Zed Attack Proxy) Security Testing Framework:

- Development: Create a web application with some common vulnerabilities.
- Security Analysis & Fixing: Use OWASP ZAP to perform security testing on the application, identify vulnerabilities, and then fix these issues by implementing secure coding practices.

Web Application Vulnerability Identification Using Burp Suite:

- Development: Develop a simple web application with common security flaws, such as SQL injection, XSS, and broken authentication mechanisms.
- Security Analysis & Fixing: Use Burp Suite to scan the application, identify vulnerabilities, and analyze the attack surface. Afterward, secure the application by fixing these vulnerabilities and re-running the scan to verify the fixes.

Penetration Testing Framework Using Metasploit:

- Development: Set up a vulnerable virtual environment using tools like Metasploitable or create your own vulnerable system or network services.
- Security Analysis & Fixing: Use Metasploit to exploit the system, demonstrate various attacks like privilege escalation, and then apply patches, configuration changes, and security best practices to mitigate the discovered vulnerabilities.

Course Assessment Method

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total	
5	30	12.5	12.5	60	

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out of which 1	
module.	question should be answered. Each question can have a	
• Total of 8 Questions, each	maximum of 2 subdivisions. Each question carries 6 marks.	40
carrying 2 marks	(4x6 = 24 marks)	
(8x2 =16 marks)		

At the end of the course students should be able to:

	Course Outcome				
CO1	Use assessment tools for vulnerability testing	К3			
CO2	Use various security tools to study web based attacks	К3			
CO3	Identify the network based attacks using network monitoring tools	К3			
CO4	Illustrate the system security measures used for windows and Linux operating systems	K2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3		3							3
CO2	2	2	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3		3							3
CO5	3	3	3		3							3

	Text Books								
Sl. No	Title of the Book	Title of the Book Name of the Author/s Pt		Edition and Year					
1	Build Your Own Security Lab	Michael Gregg	Wiley	1/e, 2008					
2	Network security and Cryptography	B. Menezes	Cengage	1/e, 2010					
3	Shellcoder's Handbook: Discovering and Exploiting Security Holes	Chris Anley, John Heasman, Felix Lindner, Gerardo Richarte	Wiley	2/e,2007					
4	Network Security Bible	Eric Cole, Ronald Krutz, James W Conley	Wiley	1/e, 2010					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Cryptography and Network Security	Behrouz A Forouzan	Tata McGraw-Hill.	3/e,2015					
2	The Complete Reference: Information Security	Mark Rhodes-Ousley	McGraw-Hill	2/e,2012					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc23_cs127/preview						
2	https://onlinecourses.nptel.ac.in/noc24_cs85/preview						
3	https://onlinecourses.swayam2.ac.in/nou19_cs08/preview						
4							

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

	Allotted	
	Marks	
Project Planning and Proposal	5	
Contribution in Progress Presentations and Question Answer Sessions	4	
Involvement in the project work and Team Work	3	
Execution and Implementation	10	
Final Presentations	5	
Project Quality, Innovation and Creativity	3	
Total	30	
	Contribution in Progress Presentations and Question Answer Sessions Involvement in the project work and Team Work Execution and Implementation Final Presentations Project Quality, Innovation and Creativity	

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project

Creativity in solutions and approaches

DATA STRUCTURES

Course Code	OECST611	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	-	Course Type	Theory

Course Objectives:

- 1. To provide the learner a comprehensive understanding of data structures and algorithms.
- 2. To prepare them for advanced studies or professional work in computer science and related fields.

Module No.	Syllabus Description			
1	Basic Concepts of Data Structures Definitions; Data Abstraction; Performance Analysis - Time & Space Complexity, Asymptotic Notations; Polynomial representation using Arrays, Sparse matrix (<i>Tuple representation</i>); Stacks and Queues - Stacks, Multi-Stacks, Queues, Circular Queues;	9		
2	Linked List and Memory Management Singly Linked List - Operations on Linked List, Stacks and Queues using Linked List, Polynomial representation using Linked List; Doubly Linked List.	9		
3	Trees and Graphs Trees:- Representation Of Trees; Binary Trees - Types and Properties, Binary Tree Representation, Tree Operations, Tree Traversals; Binary Search Trees - Binary Search Tree Operations; Graphs:- Definitions; Representation of Graphs; Depth First Search and Breadth First Search.	9		

	Sorting and Searching	
4	Sorting Techniques: Selection Sort, Insertion Sort, Quick Sort, Merge Sort; Searching Techniques - Linear Search, Binary Search, Hashing - Hashing functions: Division; Collision Resolution: Linear probing, Open hashing.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify appropriate data structures for solving real world problems.	К3
CO2	Describe and implement linear data structures such as arrays, linked lists, stacks, and queues.	К3
CO3	Describe and Implement non linear data structures such as trees and graphs.	К3
CO4	Select appropriate searching and sorting algorithms to be used in specific circumstances.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities Press	2/e, 2007					
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein	PHI	3/e, 2009					

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018			
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003			
3	Introduction to Data Structures with Applications	Tremblay J. P. and P. G. Sorenson	Tata McGraw Hill.	2/e, 2017			
4	Theory and Problems of Data Structures	Lipschuts S.	Schaum's Series	2/e, 2014			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link II)				
1	1 https://nptel.ac.in/courses/106102064				
2	2 https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/				

DATA COMMUNICATION

(Common to CS/CM/CD/CA)

Course Code	OECST612	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the details of data communication at the lower level and the associated issues.
- **2.** To gain insight into the important aspects of data communication and computer networking systems and to apply the in practical applications.

Module	Syllabus Description	
No.		
1	Communication model - Simplex, Half duplex, Full duplex transmission. Periodic analog signals - Sine wave, Amplitude, Phase, Wavelength, Time and frequency domain, Bandwidth. Analog & digital data and signals. Transmission impairments - Attenuation, Delay distortion, Noise. Data rate limits - Noiseless channel, Nyquist bandwidth, Noisy channel, Shannon's capacity formula. Guided transmission media - Twisted pair, Coaxial cable, Optical fiber. Unguided media - Radio waves, Terrestrial microwave, Satellite microwave, Infrared. Wireless propagation - Ground wave propagation, Sky wave propagation, Line-of-Sight (LoS) propagation.	10
2	Digital data to digital signal – Non-Return-to-Zero (NRZ), Return-to-Zero (RZ), Multilevel binary, Biphase. Analog data to digital signal - Sampling theorem, Pulse Code Modulation (PCM), Delta Modulation (DM). Digital data to analog signal - Amplitude Shift Keying (ASK), Frequency Shift	9

	Keying (FSK), Phase Shift Keying (PSK). Analog data to analog signal - Amplitude Modulation (AM), Frequency Modulation (FM), Phase Modulation (PM).	
3	Multiplexing - Frequency Division Multiplexing (FDM), Wavelength Division Multiplexing (WDM), Time Division Multiplexing (TDM), Characteristics, Synchronous TDM, Statistical TDM. Spread spectrum techniques - Direct Sequence Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum (FHSS), Code Division Multiplexing, Code Division Multiple Access (CDMA).	8
4	Digital data communication techniques - Asynchronous transmission, Synchronous transmission. Detecting and correcting errors - Types of errors, Parity check, Checksum, Cyclic Redundancy Check (CRC), Forward Error Correction (FEC), Hamming distance, Hamming code. Basic principles of switching - Circuit switching, Packet switching, Message switching.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)	
CO1	Identify the characteristics of signals for analog and digital transmissions so as to define the associated real world challenges.	К3	
CO2	CO2 Select transmission media based on characteristics and propagation modes.		
CO3	Choose appropriate signal encoding techniques for a given scenario	К3	
CO4	CO4 Illustrate multiplexing and spread spectrum technologies		
CO5	Use error detection, correction and switching techniques in data communication	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	2								3
CO3	3	3		2								3
CO4	3	3	3	2								3
CO5	3	3	3	2								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Data Communications and Networking	Forouzan B. A	McGraw Hill	6/e, 2019			
2	Data and Computer Communication	William Stallings	Pearson	10/e, 2016			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Mobile Communications	Schiller J	Pearson	2/e, 2009			
2	Fundamentals of Networking and Communication	Curt M. White	Cengage	7/e, 2010			

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/106105082						

FOUNDATIONS OF CRYPTOGRAPHY

Course Code	OECST613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop a foundational understanding of mathematical concepts in cryptography,
- 2. Gain comprehensive knowledge of cryptographic methods.
- 3. Understand the principles and need for computer security.

Module	Syllabus Description			
No.	Synabus Description			
1	Integer Arithmetic – Divisibility, Greatest Common Divisor Euclid's and Extended Euclid's Algorithm for GCD; Modular Arithmetic – Operations, Properties, Polynomial Arithmetic; Algebraic Structures – Group Ring Field.	9		
2	Prime numbers and Prime Factorisation - Primitive Roots, Existence of Primitive Roots for Primes, Fermat's Theorem, Primality Testing, Euler's Theorem, Euler's Totient Function, Discrete Logarithms, Modular Arithmetic, Chinese Remainder Theorem.	9		
3	Principles of security - Types of Security attacks, Security services, Security Mechanisms; Cryptography - Introduction, cryptographic notations, substitution techniques, Transposition Techniques, limitations of classical cryptography.	9		
4	Symmetric key Ciphers - Block Cipher principles & Algorithms- DES, AES, Differential and Linear Cryptanalysis; Asymmetric Key Ciphers- RSA, ECC; Hash Functions - MD5, SHA-1.	9		

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Explain the integer arithmetic operations including divisibility and GCD algorithms, modular arithmetic operations and properties, polynomial arithmetic, and algebraic structures such as groups, rings, and fields.	К2
CO2	Describe the number theory concepts essential for cryptographic applications and mathematical problem-solving.	К2
CO3	Explain the security principles, types of attacks, and protective measures, alongside a thorough understanding of cryptographic techniques and their applications in securing data.	К2
CO4	Discuss symmetric and asymmetric key cryptography, including block cipher principles, algorithms, public key cryptosystems, and hash functions	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										2
CO2	2	2										2
CO3	2	2										2
CO4	2	2										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Cryptography & Network Security	Behrouz A. Forouzan	McGraw Hill	3/e, 2007			
2	Security in Computing	Charles P. Pfleeger, Shari L. Pfleeger, Jonathan Margulies	Prentice Hall	5/e, 2015			
3	Introduction to Cryptography: Principles and Applications	H. Delfs, H. Knebl	Springer	1/e, 2002			
4	A Classical Introduction to Cryptography: Applications for Communications Security	Serge Vaudenay	Springer	1/e, 2009			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Cryptography and Network Security	William Stallings	Pearson Education	7/e,2017		

	Video Links (NPTEL, SWAYAM)				
Module No.	Module No. Link ID				
1	https://archive.nptel.ac.in/courses/111/101/111101137/				
2	https://nptel/courses/video/106105031/L17.html				
3	https://onlinecourses.nptel.ac.in/noc22_cs90/preview				

SEMESTER S6

MACHINE LEARNING FOR ENGINEERS

(Common to CS/CA/CD/CM/CR/AD/AM/AI)

Course Code	OECST614	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide the basic concepts and algorithms in machine learning.
- 2. To discuss the standard and most popular supervised and unsupervised learning algorithms.

SYLLABUS

Module	Syllabus Description	Contact
No.		Hours
1	Introduction to ML Machine Learning vs. Traditional Programming, Machine learning paradigms - supervised, semi-supervised, unsupervised, reinforcement learning. Basics of parameter estimation - maximum likelihood estimation (MLE) and maximum aposteriori estimation (MAP), Bayesian formulation. Supervised Learning Feature Representation and Problem Formulation, Role of loss functions and optimization Regression - Linear regression with one variable, Linear regression with multiple variables - solution using gradient descent algorithm and matrix method.	10
2	Classification - Naïve Bayes, KNN Generalisation and Overfitting - Idea of overfitting, LASSO and RIDGE	8

	regularization, Idea of Training, Testing, Validation	
	Evaluation measures - Classification - Precision, Recall, Accuracy, F-	
	Measure, Receiver Operating Characteristic Curve(ROC), Area Under	
	Curve (AUC).	
	Regression - Mean Absolute Error (MAE), Root Mean Squared Error	
	(RMSE), R Squared/Coefficient of Determination.	
	Neural Networks (NN) - Perceptron, Neural Network - Multilayer feed-	
3	forward network, Activation functions (Sigmoid, ReLU, Tanh), Back	8
3	propagation algorithm.	8
	Decision Trees – Information Gain, Gain Ratio, ID3 algorithm	
	Unsupervised Learning	
	Clustering - Similarity measures, Hierarchical Clustering - Agglomerative	
	Clustering, partitional clustering, K-means clustering	
4	Dimensionality reduction - Principal Component Analysis,	10
4	Multidimensional scaling	10
	Ensemble methods - bagging, boosting	
	Resampling methods - Bootstrapping, Cross Validation. Practical aspects -	
	Bias-Variance trade-off	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each of which 1 question should be answered.		60
carrying 3 marks	carrying 3 marks • Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate Machine Learning concepts and basic parameter estimation methods	К2
CO2	Demonstrate supervised learning concepts (regression, classification)	К3
CO3	Illustrate the concepts of Multilayer neural network and Decision trees	К3
CO4	Describe unsupervised learning concepts and dimensionality reduction techniques	К3
CO5	Use appropriate performance measures to evaluate machine learning models	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								2
CO2	3	3	3	3	2							2
CO3	3	3	3	3	2							2
CO4	3	3	3	3	2							2
CO5	3	3	3	3	2							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Machine Learning	Ethem Alpaydin	MIT Press	2/e, 2010				
2	Data Mining and Analysis: Fundamental Concepts and Algorithms	Mohammed J. Zaki, Wagner Meira	Cambridge University Press	1/e, 2016				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Machine Learning	Tom Mitchell	McGraw-Hill	1997			
2	Applied Machine Learning	M Gopal	Pearson	2/e, 2018			
3	Neural Networks for Pattern Recognition	Christopher Bishop	Oxford University Press	1995			
4	Machine Learning: A Probabilistic Perspective	Kevin P Murphy	MIT Press	1/e, 2012			
5	The Elements Of Statistical Learning	Trevor Hastie, Robert Tibshirani, Jerome Friedman	Springer	2/e, 2007			

	Video Links (NPTEL, SWAYAM)					
Module						
No.	Link ID					
1	https://youtu.be/fC7V8QsPBec?si=8kqBn7x1RG5V1J					
2	https://youtu.be/gLURKuIj4?si=Xj10NPfMfpQSOhVx					
3	https://youtu.be/yG1nETGyW2E?si=ySlxpeWuFAUQBf7-					
4	https://youtu.be/zop2zuwF_bc?si=W7TpSHLdi4rykva4					

SEMESTER S6

OBJECT ORIENTED PROGRAMMING

(Common to CS/CA/CD/CM/AM/AD)

Course Code	OECST615	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To teach the core object-oriented principles such as abstraction, encapsulation, inheritance, and polymorphism, robust error-handling using exception mechanisms to ensure program reliability.
- 2. To equip the learner to develop object oriented programs encompassing fundamental structures, environments, and the effective utilization of data types, arrays, strings, operators, and control statements for program flow in Java.
- **3.** To enable the learner to design and develop event-driven graphical user interface (GUI) database applications using Swing and database connection components.

SYLLABUS

Module No.	Syllabus Description				
1	Introduction to Java - Java programming Environment and Runtime Environment (Command Line & IDE); Java compiler; Java Virtual Machine; Primitive Data types and Wrapper Types; Casting and Autoboxing; Arrays; Strings; Vector class; Operators - Arithmetic, Bitwise, Relational, Boolean Logical, Assignment, Conditional (Ternary); Operator Precedence; Control Statements - Selection Statements, Iteration Statements and Jump Statements; Functions; Command Line Arguments; Variable Length Arguments; Classes; Abstract Classes; Interfaces; OOP Concepts - Data abstraction, encapsulation, inheritance, polymorphism, Procedural and object oriented programming paradigm; Microservices; Object Oriented	10			

	Programming in Java - Declaring Objects; Object Reference; Introduction to Methods; Constructors; Access Modifiers; <i>this</i> keyword.	
2	Polymorphism - Method Overloading, Using Objects as Parameters, Returning Objects, Recursion; Static Members, Final Variables, Inner Classes. Inheritance - Super Class, Sub Class, Types of Inheritance, The <i>super</i> keyword, protected Members, Calling Order of Constructors; Method Overriding, Dynamic Method Dispatch, Using <i>final</i> with Inheritance.	8
3	Packages and Interfaces – Packages - Defining a Package, CLASSPATH, Access Protection, Importing Packages; Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s); Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions.	9
4	Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField; Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model; Developing Database Applications using JDBC – JDBC overview, Types, Steps, Common JDBC Components, Connection Establishment.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the process of developing Java programs, including their structure and components, to demonstrate proficiency.	K2
CO2	Utilize object-oriented programming principles in the design and implementation of Java applications.	К3
CO3	Develop and manage Java packages and interfaces, enhancing code modularity and reusability.	К3
CO4	Implement error handling using Java's exception mechanisms and leverage interfaces for modular applications.	К3
CO5	Develop event-driven Java GUI applications with database connectivity.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3		3							3
CO4	3	3	3		3							3
CO5	3	3	3		3							3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Java: The Complete Reference	Herbert Schildt	Tata McGraw Hill	13/e, 2024			
2	Introduction to Java Programming, Comprehensive Version	Y Daniel Liang	Pearson	10/e, 2014			
3	Head First Design Patterns	Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra	O'Reilly Media	1/e, 2004			

	Reference Books						
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year			
1	Head First Java: A Brain Friendly Guide	Kathy Sierra & Bert Bates	O'Reilly	3/e, 2022			
2	JAVA TM for Programmers	Paul Deitel	PHI	11/e, 2018			
3	Clean Code : A Handbook of Agile Software Craftsmanship	Robert C. Martin	Prentice Hall	1/e, 2008			
4	Programming with Java	E Balagurusamy	McGraw Hill	6/e, 2019			
5	Java For Dummies	Barry A. Burd	Wiley	8/e, 2022			
6	Effective Java	Joshua Bloch	Pearson	3/e, 2018			

	Video Links (NPTEL, SWAYAM)					
Modul e No.	Link ID					
1	https://nptel.ac.in/courses/106105191 (Lecture no: 9, 10, 1, 2, 3, 4)					
2	https://nptel.ac.in/courses/106105191 (Lecture no: 1, 7, 8, 11, 12, 13, 14, 15, 16)					
3	https://nptel.ac.in/courses/106105191 (Lecture no: 17, 18, 19, 20, 21, 22, 23, 24, 25, 26)					
4	https://nptel.ac.in/courses/106105191 (Lecture no: 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55)					

SEMESTER S6

SYSTEMS LAB

Course Code	PCCSL607	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To introduce the fundamental concepts of compiler design, including lexical analysis, syntax analysis, and code generation.
- **2.** To equip students with practical skills to design and implement the components of a compiler using tools like LEX and YACC.
- **3.** To teach students the basic and advanced techniques of virtual machine instantiation and management using open-source hypervisors / public cloud platforms.

Expt. No.	Experiments
1	Design and implement a lexical analyzer using C language to recognize all valid tokens in the input program. The lexical analyzer should ignore redundant spaces, tabs and newlines. It should also ignore comments.
2	Write a lex program to display the number of lines, words and characters in an input text.
3	Generate a YACC specification to recognize a valid arithmetic expression that uses operators +, -, *,/ and parenthesis.
4	Implementation of Calculator using LEX and YACC
5	Convert the BNF rules into YACC form and write code to generate abstract syntax tree.
6	Write a program to find First and Follow of any given grammar.
7	Design and implement a recursive descent parser for a given grammar.
8	Construct a Shift Reduce Parser for a given language.
9	Write a program to perform constant propagation.

10	Implement Intermediate code generation for simple expressions.
11	Implement the back end of the compiler which takes the three address code and produces assembly language instructions that can be assembled and run using a corresponding assembler. The target assembly instructions can be simple move, add, sub, jump etc.
12	Instantiation of VMs with image file using open-source hypervisors / public cloud platforms.
13	Virtual machine Cluster set up using open-source hypervisors / public cloud platforms.
14	Setting host name for virtual machine nodes in cluster and ssh set up for remote login.
15	Copy a file from one virtual machine to another virtual machine.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with			
Preparatory	Execution of work/	valid inference/	Viva	D	T-4-1
work/Design/	troubleshooting/	Quality of	voce	Record	Total
Algorithm	Programming	Output			
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Implement lexical and syntax analyzer using the tools LEX and YACC	К3
CO2	Develop Top-Down and Bottom-Up parsers.	К3
CO3	Implement intermediate code for expressions.	К3
CO4	Experiment with a cluster of virtual machines in a virtualized environment.	К3
CO5	Demonstrate the data sharing and communication between virtual machines.	К3

Note: K1-Remember, K2- Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	3	3					2		3
CO2	2	2	3	3	3				2	2		3
CO3	2	2	3	3	3				2	2		3
CO4			3	3	3				2	2		3
CO5					3				2	2		3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering a Compiler	Keith D. Cooper Linda Torczon	Katey Birtcher	3/e, 2023		
2	Lex and Yacc	John R Levine, Tony Mason& Doug Brown	O'Reilly Media, Inc	2/e, 2013		
3	Distributed and Cloud Computing: From Parallel Processing to the Internet of Things	Kai Hwang, Jack Dongarra, Geoffrey C. Fox	Morgan Kaufman	1/e, 2018		
4	Virtual Machines	Manan Shah, Charusmita Shah	Lambert Academic Publishing	1/e, 2018		

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Compilers Principles Techniques and Tools	Aho A Ravi Sethi and J D Ullman	Addison Wesley	2/e, 2013		
2	Compiler Construction Principles and Practice	Kenneth C Louden	Cenage Learning Indian Edition	1/e, 2007		
3	System programming and operating system	D M Dhamdhare	Tata McGraw Hill & Company	1/e, 2013		
4	The Theory and Practice of Compiler Writing	Tremblay and Sorenson	Tata McGraw Hill & Company	1/e, 1985		

Video Links (NPTEL, SWAYAM)						
No.	No. Link ID					
1	https://archive.nptel.ac.in/courses/106/105/106105190/					
2	https://www.virtualbox.org/					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted