Course c	ode	Course Name	L-T-P -Credits	Year Introdu	
MA20	4 Pro	bability, Random Processes and Numerical Methods	3-1-0-4	201	
Prerequi	site: Nil				
Course C	bjectives				
• To	introduces	the modern theory of probability	y and its applications t	o modelli	ng and
		ocessing of random processes and			U
		of the important models of discrete		oility distri	butions
		ed models of random processes			
ch	ains.	CINDIO	CICAL		
• To	understand	some basic numerical methods for	interpolation and integr	ation and	also for
		equations and solutions of ODEs.			
Syllabus	88	THE REAL	H Y		
	ndom variable	es- Continuous Random variables-Mu	ultiple Random variables.	Random Pr	ocesses-
		pectrum-Special Random Processes.	*		
	d outcome.	<u>ــــــــــــــــــــــــــــــــــــ</u>			
At the e	nd of the co	urse students would have become	familiar with quantifyi	ng and an	alysing
random	phenomena	using various models of probabi	lity distributions and ra	andom pro	ocesses.
They we	ould also have	e learned the concepts of autocorr	elation and power spect	ral density	. Some
of the fu	ndamental n	umerical methods learned in the c	ourse would help them	to solve a	variety
of mathe	matical prob	lems by the use of computers when	n analytical methods fail	or are diff	ficult.
Text Bo	ok:				
		lian, "Probability, Statis <mark>ti</mark> cs and Qu			09
2. Ei	win Kreyszig	g, "Advanced Engineering Mathem	natics", 10 th edition, Wile	ey, 2015.	
Referen					
		lik, "Introduction to Probability, S		Processes",	Kappa
		Also available online at <u>www.probal</u>		005	
		damentalsofAppliedProbabilityandRa			
	-	robability Statistics and Random Proc Numerical Mathematical and computi			
4. W	ard-Cheney, I	Course Pla			
			•11		End
Module		Contents		Hours	Sem. Exam Marks
	Discrete ran	dom variables [Text 1: Relevant	portions of sections		
		2.5, 3.3 and 3.4]			
		dom variables, probability mass fur	nction, cumulative	3	
		function, expected value, mean and			
Ι		dom variable-, mean, variance.			
	Poisson rand	om variable, mean, variance, appro	oximation of binomial	2	
	by Poisson.			2	
	Distribution	fitting-binomial and Poisson.			
	0			2	15%
		random variables [Text 1: Relev	ant portions of		
TT		2.5, 3.7, 3.8 and 3.11]	:		
II		andom variables, Probability dens	ity function, expected	2	
		and variance.			150/
	Uniform ran	dom variable-, mean, variance.		2	15%

	Exponential random variable-mean, variance, memoryless property.	2	
	Normal random variable-Properties of Normal curve mean, variance	•	
	(without proof), Use of Normal tables.	3	
	FIRST INTERNAL EXAMINATION		
	Joint distributions [Text 1: Relevant portions of sections 4.1, 4.2, 4.4 4.7and 4.10]		15%
	Joint probability distributions- discrete and continuous, marginal	4	
III	distributions, independent random variables. Expectation involving two or more random variables, covariance of pairs of random variables.	3	
	Central limit theorem (without proof).	2	
	Random processes [Text 1: Relevant portions of sections 5.1, 5.2,		15%
	5.3 and 6.2]		
	Random processes, types of random processes,	2	
IV	Mean, correlation and covariance functions of random processes, Wide	4	
1 V	Sense Stationary (WSS) process, Properties of autocorrelationand auto		
	covariance functions of WSS processes.		
	Power spectral density and its properties.		
		2	
	SECOND INTERNAL EXAMINATION		-
	Special random processes [Text 1: Relevant portions of sections		20%
	5.5, 5.5.1, 5.5.2, 5.5.3, 5.5.4) and 5.6]		
	Poisson process-properties, probability distribution of inter arrival times.	4	
V	Discrete time Markov chain- Transition probability matrix, Chapman	5	
	Kolmogorov theorem (without proof), computation of probability		
	distribution and higher order transition probabilities, stationary		
	distribution.		
	Numerical Methods [Text 2: Relevant portions of sections 19.2,		20%
	19.3, 19.5 and 21.1]		
	(Derivation of formulae not required in this module)		
	Finding roots of equations-Newton-Raphson method.	3	
VI	Interpolation-Newton's forward and backward difference formula,	3	
	Lagrange's interpolation method.		
	Numerical Integration-trapezoidal rule, Simpson's 1/3rd rule.	3	
	Numerical solution of first order ODE-Euler method, Runge-Kutta	3	
	fourth order (classical method).		
	END SEMESTER EXAM		

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

Any two questions from each part have to be answered.

Course code	Course Name	L-T-P - Credits	Year of Introduction
EC202	SIGNALS & SYSTEMS	3-1-0 -4	2016
	Prerequisite: Ni		
Course Object			
1. To train st	udents for an intermediate level of flue		
	time and discrete time, in preparation for		s in digital signal
	image processing, communication theory		. 1
	continuous and discrete-time signals ons and methods those are necessary for		
-	s and systems.	MIM KI	
•	ize with techniques suitable for analyzing a	and synthesizing both co	ontinuous-time
	e time systems.		
	owledge of time-domain representation and	l analysis concepts as th	ey relate to
differential	equations, difference equations, impulse re-	esponse and convolution	n, etc.
	equency-domain representation and analysi	is concepts using Fourie	er analysis tools,
	ansform and Z-transform.		
To stud	y concepts of the sampling process, recons	truction of signals and i	nterpolation.
Syllabus	N		
	nals, Continuous time and Discrete time		č 1
	uation representation, Difference equation		
	rete time LTI Systems, Correlation betw		
	nain representation, Continuous time Fo		
	lace transform, Inverse Laplace transform		
	ency response, Sampling, Aliasing, Z tran		
	uency domain representation of discrete t		
and discrete the above transform	me Fourier transform (DTFT), Analysis	of discrete time LTI s	ystems using the
Expected out			
The student wil			
	represent, classify and characterize basic p	properties of continuous	and discrete
	male and existence	nopernes of commutous	
-	ent the CT signals in Fourier series and inte	ernret the properties of F	Sourier
	m and Laplace transform	ipiet the properties of I	ouner
	the relation between convolutions, correla	tion and to describe the	orthoganality
of signa			
-	e the concept of transfer function and deter	rmine the magnitude and	d phase response
of LTI s			1 1
v. Explain	sampling theorem and techniques for sam	pling and reconstruction	1.
vi. Determi	ine z transforms, inverse z transforms and a	analyze LTI systems usi	ng z transform.
Text Book:		P	
	7. Oppenheim and Alan Willsky, Signals and		009
	Haykin, Signals & Systems, John Wiley, 2	2/e, 2003	
References:			
	Kumar, Signals and Systems, PHI, 3/e, 201		
	thi, Priciples of Signal Processing & Linea	r systems, Oxford Univ	ersity Press.
-	, Signals and System, PHI.		
	od Nahvi, Signals and System, Mc Graw H		
5. P Rama	krishna Rao, Shankar Prakriya, Signals and	a System, MC Graw Hi	II Edn 2013.

	Course Plan		
Module	Contents	Hours	Sem. Exan Marks
	Elementary Signals, Classification and representation of continuous time and discrete time signals, Signal operations	4	
Ι	Continuous time and discrete time systems - Classification, Properties.	3	15%
	Representation of systems: Differential equation representation of continuous time systems. Difference equation representation of discrete systems.	2	
	Continuous time LTI systems and convolution integral.	3	
II	Discrete time LTI systems and linear convolution.	2	15%
11	Stability and causality of LTI systems.	2	13%
	Correlation between signals, Orthoganality of signals.	2	
	FIRST INTERNAL EXAMINATION	3.	
	Frequency domain representation of continuous time signals- continuous time Fourier series and its properties.	4	15%
III	Convergence, Continuous time fourier transform and its properties.	3	
	Laplace Transform, ROC, Inverse transform, properties, unilateral Laplace transform.	3	
	Relation between Fourier and Laplace transforms.	1	
IV	Analysis of LTI systems using Laplace and Fourier transforms. Concept of transfer function, Frequency response, Magnitude and phase response.	4	15%
	Sampling of continuous time signals, Sampling theorem for lowpass signals, aliasing.	3	
	SECOND INTERNAL EXAMINATION	2.4	
	Z transform, ROC, Inverse transform, properties, Unilateral Z transform.	4	20%
V	Frequency domain representation of discrete time signals, Discrete time fourier series and its properties.	4]
	Discrete time fourier transform (DTFT) and its properties	4	1
VI	Relation between DTFT and Z-Transform, Analysis of discrete time LTI systems using Z transforms and DTFT, Transfer function, Magnitude and phase response.	6	20%

Assignment: Convolution by graphical methods, Solution of differential equations. **Project:** Use of Matlab in finding various transforms: magnitude and phase responses.

Question Paper Pattern (End Sem Exam)

Maximum Marks: 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark pattern is according to the syllabus with maximum 30 % for theory and 70% for logical/numerical problems, derivation and proof.

		'-P - dits		r of uction
EC204		-0-4		16
	Prerequisite: Nil		,	
Course Ob	-			
amp	equip the students with a sound understanding of fundamental c lifiers understand the wide range of applications of operational amplif		ts of opera	ational
	ntroduce special function integrated circuits ntroduce the basic concepts and types of data converters	M		
Syllabus		V I		
parameters, amp applic	amplifier configurations, Operational amplifiers, Block Effect of finite open loop gain, bandwidth and slew rate on ations-linear and nonlinear, Active filters, Specialized ICs Voltage Regulators - types and its applications, Data conver	circuit and t	performa heir appl	nce, op- ications,
Expected	outcome .	_		
The student				
	e a thorough understanding of operational amplifiers			
	ble to design circuits using operational amplifiers for various a	pplicat	tions	
Text Book	KS:			
1. Fra	nco S., Design with Operational Amplifiers and Analog Integr	ated C	ircuits, 3/	е,
	ta McGraw Hill, 2008			
2. Sal	livahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, 7	Tata M	cGraw Hi	11, 2008
Reference				
	kar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010		·	
2. C.G	. Clayton, Operational Amplifiers, Butterworth & Company Pu	bl. Lto	l. Elsevier	, 1971
3. Davi 2010	id A. Bell, Operational Amplifiers & Linear ICs, Oxford Universi	ty Pres		tion,
	akwad R. A., Op-Amps and Linear Integrated Circuits, Prentic	e Hall.	4/e. 2010	1
	Coughlin & Fredrick Driscoll, Operational Amplifiers & Line		,	
เก	Edition, PHI,2001		C	,
	D. C. and S. B. Jain, Linear Integrated Circuits, New Age Inte	rnatio	nal. 3/e. 20)10
	ra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford			
3	Course Plan		-	
Module	Contents		Hours	Sem. Exam Marks
	Differential amplifiers: Differential amplifier configurations usi	ng		
	BJT, Large and small signal operations, Input resistance, Voltag	0		
	gain, CMRR, Non-ideal characteristics of differential ampl		6	
1	Frequency response of differential amplifiers, Current sourc	es,	0	
	Active load, Concept of current mirror circuits, Wilson cu			150%
	mirror circuits (Analysis using hybrid 'pi' model only).			15%
	Operational amplifiers: Introduction, Block diagram, Ideal op-a	mp		
	parameters, Equivalent circuit, Voltage transfer curve, Open lo	-	5	
	op-amp configurations, Effect of finite open loop gain, Bandwi	-	5	
	and slew rate on circuit performance			
II	Op-amp with negative feedback: Introduction, Feedback:	back	3	15%

		г	
	configurations, Voltage series feedback, Voltage shunt feedback,		
	Properties of practical op-amp.		
	Op-amp applications: Inverting and non inverting amplifier, DC and AC amplifiers, Summing, Scaling and averaging amplifiers,	4	
	Instrumentation amplifier.	4	
	FIRST INTERNAL EXAMINATION	I I	
	Op-amp applications: Voltage to current converter, Current to		
III	voltage converter, Integrator, Differentiator, Precision rectifiers,	7	15%
	Log and antilog amplifier, Phase shift and Wien bridge oscillators		
	Astable and monostable multivibrators, Triangular and saw tooth		
	wave generators, Comparators, Zero crossing detector, Schmitt	5	
	trigger	5	
IV	Active filters: Advantages, First and second order low pass, High	-	15%
	pass, Band pass and band reject filters, Design of filters using	5	
	Butterworth approximations	5	
	SECOND INTERNAL EXAMINATION		
	Specialized ICs and its applications:		20%
	Timer IC 555 : Astable and monostable operations, applications.		2070
	Analog Multipliers: Introduction, Gilbert multiplier cell.	3	
	Voltage Controlled Oscillator IC AD633 and their applications.		
	Phase Locked Loop – Operation, Closed loop analysis, Lock and		
V	capture range, Basic building blocks, PLL IC 565, Applications of	4	
	PLL for AM & FM detection and Frequency multiplication,		
	Frequency division, Frequency synthesizing.		
	Monolithic Voltage Regulators - Fixed voltage regulators, 78XX		
	and 79XX series, Adjustable voltage regulators, IC 723 – Low	4	
	voltage and high voltage configurations, Current boosting, Current		
	limiting, Short circuit and Fold-back protection.		
	Data Converters: D/A converter, Specifications, Weighted resistor	3	20%
	type, R-2R Ladder type.		
VI	A/D Converters: Specifications, Classification, Flash type,		
	Counter ramp type, Successive approximation type, Single slope	5	
	type, Dual slope type, Sample-and-hold circuits.		
	END SEMESTER EXAM		

Assignment

- 1. Explain the importance of frequency compensated networks in opamps and the commonly used compensation techniques.
- 2. Write short notes on commercially available integrated circuits (Opamp, ADC, DAC, VCO, Analog multiplier, PLL) with pin outs and their important features

Question Paper Pattern (End Sem Exam)

Maximum Marks: 100

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with maximum60 % for theory and 40% for logical/numerical problems, derivation and proof.

Time: 3 hours

Course	Course Name L-T			r of
code	Cre			luction
EC206	COMPUTER ORGANISATION 3-0-	0-3	20	16
	site: EC207 Logic Circuit Design			
Course Ol				
	impart knowledge in computer architecture.			
	impart knowledge in machine language programming. develop understanding on I/O accessing techniques and memory	struct	ures.	
Syllabus	AU ARITIKALA	5/8		
addressing and control	units of a computer, Arithmetic circuits, Processor archite modes, Execution of program, Micro architecture design proce of units, I/O accessing techniques, Memory concepts, Memor mory concepts.	ess, De	sign of d	ata path
-	l outcome .			
	ts will be able to:			
	derstand the functional units of a computer			
	ntify the different types of instructions			
	derstand the various addressing modes			
	derstand the I/O addressing system			
v. Cat Text Boo	tegorize the different types of memories			
D 2. D	avid A. Patterson and John L. Hennessey, Computer Organisatic esign, Fourth Edition, Morgan Kaufmann avid Money Harris, Sarah L Harris, Digital Design and omputer Architecture, M Kaufmann – Elsevier, 2009 res Carl Hamacher : "Computer Organization ", Fifth Edition, Mc	-	411	
2.	John P Hayes: "Computer Architecture and Organisation", Mc William Stallings: "Computer Organisation and Architecture",	Graw l	Hill	ion
	Andrew S Tanenbaum: "Structured Computer Organisation", P			
	Craig Zacker: "PC Hardware : The Complete Reference". TME		Luucatio	11
~~~	Course Plan	H		
Module	Contents	0	Hours	Sem. Exam Marks
I	Functional units of a computer Arithmetic Circuits: Adder-carry propagate adder, Ripple adder, Basics of carry look ahead and prefix adder, Subtractor, Comparator, ALU	carry	4	15%
	Shifters and rotators, Multiplication, Division		3	
	Number System: Review of Fixed point & Floating point numb	er	1	
	system		1	
	Architecture : Assembly Language, Instructions, Operands,		2	
II	Registers, Register set, Memory, Constants		4	15%
11	Machine Language: R-Type, I-Type, J-Type Instruct Interpreting machine language code	tions,	3	1370
	FIRST INTERNAL EXAMINATION			

	MIPS memory map, Steps for executing a program - Compilation,	3	
	Assembling, Linking, Loading Pseudo instructions, Exceptions, Signed and Unsigned instructions, Floating point instructions	3	
	MIPS Microarchitectures – State elements of MIPS processor	1	
IV	Design process and performance analysis of Single cycle processor, Single cycle data path, Single cycle control for R – type arithmetic/logical instructions.	3	15
	Design process and performance analysis of multi cycle processor, Multi cycle data path, Multi cycle control for R – type arithmetic/logical instructions.	3	
	SECOND INTERNAL EXAMINATION		
V	I/O system – Accessing I/O devices, Modes of data transfer, Programmed I/O, Interrupt driven I/O, Direct Memory Access, Standard I/O interfaces – Serial port, Parallel port, PCI, SCSI, and USB.	3	-20
·	Memory system – Hierarchy, Characteristics and Performance analysis, Semiconductor memories (RAM, ROM, EPROM Memory Cells – SRAM and DRAM, internal organization of memory chip, Organization of a memory unit.	4 1	
VI	Cache Memory – Concept/principle of cache memory, Cache size, mapping methods – direct, associated, set associated, Replacement algorithms, Write policy- Write through, Write back.	3	20%
	Virtual Memory – Memory management, Segmentation, Paging, Address translation, Page table, Translation look aside buffer.	3	

# **Question Paper Pattern (End Sem Exam)**

Estel

#### Maximum Marks: 100

#### Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with maximum80 % for theory and 20% for logical/numerical problems, derivation and proof.

code	Course Name	L-T-P - Credits	Yea Introd	ar of luctio
EC208	ANALOG COMMUNICATION ENGINEERING	3-0-0-3	20	)16
Prerequi	site: EC205 Electronic Circuits			
Course O	bjectives			
• To	study the concepts and types of modulation schemes.			
	study different types of radio transmitters and receivers.			
	study the effects of noise in analog communication systems.			
	impart basic knowledge on public telephone systems.	$\Delta AA$		
Syllabus		1 21 2 2		
Amplitude modulatio Frequency	of communication system, Need for modulation, No e modulator circuits, Demodulator circuits, AM transm n: principles of frequency modulation, phase modulation modulator circuits, FM transmitters, FM receiver, No	nitters, Type on, AM and ise in AM a	s of AM d FM Re	l, An eceiv
	phone systems, standard telephone set, cordless telephone	S.		
-	d outcome . hts will be able to:			
	derstand the different analog modulation schemes.			
	derstand the fundamental ideas of noises and its effect in c	ommunicatio	n system	ç
	blain the principle and working of analog transmitters and		ni system	5.
	by the basic idea of telephone systems.			
Text Bo				
	ennis Roody and John Coolen, Electronic Communication	n. Pearson, 4	/e. 2011.	
	eorge Kennedy, Electronic Communication Systems, McG			
		паwпіп, 4/е,	2008.	
3. To Reference	omasi, Electronic Communications System, Pearson, 5/e, ces:	2011.	2008.	
3. To Reference 1. Bla 2. Sin 3. Tau	omasi, Electronic Communications System, Pearson, 5/e, ces: ke, Electronic Communication system, Cengage, 2/e, 201 non Haykin, Communication Systems, Wiley 4/e, 2006. lb, Schilling, Saha, Principles of communication system, M nasi, Advanced Electronic Communications Systems, Pear	2011. 2. AcGraw Hill,	, 2013.	
3. To Reference 1. Bla 2. Sin 3. Tau	omasi, Electronic Communications System, Pearson, 5/e, ces: ke, Electronic Communication system, Cengage, 2/e, 201 non Haykin, Communication Systems, Wiley 4/e, 2006. lb, Schilling, Saha, Principles of communication system, N	2011. 2. AcGraw Hill,	, 2013.	- Co
3. To Reference 1. Bla 2. Sin 3. Tau	omasi, Electronic Communications System , Pearson, 5/e, ces: ke, Electronic Communication system, Cengage, 2/e, 201 non Haykin, Communication Systems, Wiley 4/e, 2006. nb, Schilling, Saha, Principles of communication system, N masi, Advanced Electronic Communications Systems, Pear Course Plan Contents	2011. 2. AcGraw Hill, rson, 6/e, 201	, 2013.	Exa
3. To Reference 1. Bla 2. Sin 3. Tau 4. Tor	omasi, Electronic Communications System, Pearson, 5/e, ces: ke, Electronic Communication system, Cengage, 2/e, 201 non Haykin, Communication Systems, Wiley 4/e, 2006. b, Schilling, Saha, Principles of communication system, N masi, Advanced Electronic Communications Systems, Pear Course Plan	2011. 2. AcGraw Hill, rson, 6/e, 201	, 2013. 12.	Exa
3. To Reference 1. Bla 2. Sin 3. Tau 4. Tor	omasi, Electronic Communications System , Pearson, 5/e, ces: ke, Electronic Communication system, Cengage, 2/e, 201 non Haykin, Communication Systems, Wiley 4/e, 2006. ib, Schilling, Saha, Principles of communication system, Nasi, Advanced Electronic Communications Systems, Pear Course Plan Contents Introduction, Elements of communication systems, Namodulation Noise in communication system, Thermal noise (whit Shot noise, Partition noise, Flicker noise, Burst noise, Sig	2011. 2. AcGraw Hill, rson, 6/e, 201 eed for te noise), gnal to	, 2013. 12. Hours	Exa Ma
3. To Reference 1. Bla 2. Sin 3. Tau 4. Too Module	omasi, Electronic Communications System , Pearson, 5/e, ces: ke, Electronic Communication system, Cengage, 2/e, 201 non Haykin, Communication Systems, Wiley 4/e, 2006. ib, Schilling, Saha, Principles of communication system, Nemasi, Advanced Electronic Communications Systems, Pear Course Plan Contents Introduction, Elements of communication systems, Nemodulation Noise in communication system, Thermal noise (whit Shot noise, Partition noise, Flicker noise, Burst noise, Signoise ratio, Noise factor, Noise temperature, Narrow band	2011. 2. AcGraw Hill, rson, 6/e, 201 eed for te noise), gnal to d noise.	2013. 12. Hours 2	Exa Ma
3. To Reference 1. Bla 2. Sin 3. Tau 4. Too Module	omasi, Electronic Communications System , Pearson, 5/e, ces: ke, Electronic Communication system, Cengage, 2/e, 201 non Haykin, Communication Systems, Wiley 4/e, 2006. ib, Schilling, Saha, Principles of communication system, Nasi, Advanced Electronic Communications Systems, Pear Course Plan Contents Introduction, Elements of communication systems, Namodulation Noise in communication system, Thermal noise (whit Shot noise, Partition noise, Flicker noise, Burst noise, Signoise ratio, Noise factor, Noise temperature, Narrow band Amplitude modulation: Sinusoidal AM, Modulation	2011. 2. AcGraw Hill, rson, 6/e, 201 eed for te noise), gnal to d noise.	2013. 12. Hours 2	Exa Ma
3. To Reference 1. Bla 2. Sin 3. Tau 4. Too Module	omasi, Electronic Communications System , Pearson, 5/e, ces: ke, Electronic Communication system, Cengage, 2/e, 201 non Haykin, Communication Systems, Wiley 4/e, 2006. ib, Schilling, Saha, Principles of communication system, Nemasi, Advanced Electronic Communications Systems, Pear Course Plan Contents Introduction, Elements of communication systems, Nemodulation Noise in communication system, Thermal noise (whit Shot noise, Partition noise, Flicker noise, Burst noise, Signoise ratio, Noise factor, Noise temperature, Narrow band	2011. 2. AcGraw Hill, rson, 6/e, 201 eed for te noise), gnal to d noise.	2013. 12. Hours 2 3	Exa Ma 15
3. To Reference 1. Bla 2. Sin 3. Tau 4. Tor Module	bmasi, Electronic Communications System , Pearson, 5/e, ces: ke, Electronic Communication system, Cengage, 2/e, 201 hon Haykin, Communication Systems, Wiley 4/e, 2006. b), Schilling, Saha, Principles of communication system, Nasi, Advanced Electronic Communications Systems, Pear Course Plan Contents Introduction, Elements of communication systems, Namodulation Noise in communication system, Thermal noise (whit Shot noise, Partition noise, Flicker noise, Burst noise, Signoise ratio, Noise factor, Noise temperature, Narrow band Amplitude modulation: Sinusoidal AM, Modulation Average power, Effective voltage and current, Nonsing	2011. 2. AcGraw Hill, rson, 6/e, 201 eed for te noise), gnal to d noise. index, nusoidal	2013. 12. Hours 2 3 4	Exa Ma 15
3. To Reference 1. Bla 2. Sin 3. Tau 4. Tor Module	bmasi, Electronic Communications System , Pearson, 5/e, ces: ke, Electronic Communication system, Cengage, 2/e, 201 hon Haykin, Communication Systems, Wiley 4/e, 2006. b), Schilling, Saha, Principles of communication system, Nemasi, Advanced Electronic Communications Systems, Pear Course Plan Course Plan Contents Introduction, Elements of communication systems, Nemodulation Noise in communication system, Thermal noise (whith Shot noise, Partition noise, Flicker noise, Burst noise, Signoise ratio, Noise factor, Noise temperature, Narrow band Amplitude modulation: Sinusoidal AM, Modulation Average power, Effective voltage and current, Nonsin modulation.	2011. 2. AcGraw Hill, rson, 6/e, 201 eed for te noise), gnal to d noise. index, nusoidal	2013. 12. Hours 2 3	Ex. Ma 15
3. To Reference 1. Bla 2. Sin 3. Tau 4. Tor Module	bmasi, Electronic Communications System , Pearson, 5/e, ces: ke, Electronic Communication system, Cengage, 2/e, 201 hon Haykin, Communication Systems, Wiley 4/e, 2006. b) Schilling, Saha, Principles of communication system, Nasi, Advanced Electronic Communications Systems, Pear Course Plan Contents Introduction, Elements of communication systems, Namodulation Noise in communication system, Thermal noise (whit Shot noise, Partition noise, Flicker noise, Burst noise, Signoise ratio, Noise factor, Noise temperature, Narrow band Amplitude modulation: Sinusoidal AM, Modulation Average power, Effective voltage and current, Nonsig modulation.	2011. 2. AcGraw Hill, rson, 6/e, 201 eed for te noise), gnal to d noise. index, nusoidal c circuits,	2013. 12. Hours 2 3 4	Ex. Ma 15
3. To Reference 1. Bla 2. Sin 3. Tau 4. Tor Module	Demasi, Electronic Communications System , Pearson, 5/e, 2000 ke, Electronic Communication system, Cengage, 2/e, 2010 hon Haykin, Communication Systems, Wiley 4/e, 2006. b), Schilling, Saha, Principles of communication system, Note in communication communications Systems, Pearson Course Plan Course Plan Contents Introduction, Elements of communication systems, Note in communication system, Thermal noise (whit Shot noise, Partition noise, Flicker noise, Burst noise, Signoise ratio, Noise factor, Noise temperature, Narrow band Amplitude modulation: Sinusoidal AM, Modulation Average power, Effective voltage and current, Nonsimmodulation. Amplitude modulator circuits, Amplitude demodulator AM transmitters, Noise in AM Systems.	2011. 2. AcGraw Hill, rson, 6/e, 201 eed for te noise), gnal to d noise. index, nusoidal c circuits, N	2013. 12. Hours 2 3 4	Exa Ma 15
3. To Reference 1. Bla 2. Sin 3. Tau 4. Ton Module I I	masi, Electronic Communications System , Pearson, 5/e, ke, Electronic Communication system, Cengage, 2/e, 201 non Haykin, Communication Systems, Wiley 4/e, 2006. th, Schilling, Saha, Principles of communication system, Masi, Advanced Electronic Communications Systems, Pear Course Plan Contents Introduction, Elements of communication systems, Ne modulation Noise in communication system, Thermal noise (whit Shot noise, Partition noise, Flicker noise, Burst noise, Sig noise ratio, Noise factor, Noise temperature, Narrow band Amplitude modulation: Sinusoidal AM, Modulation Average power, Effective voltage and current, Nonsin modulation. Amplitude modulator circuits, Amplitude demodulator AM transmitters, Noise in AM Systems. FIRST INTERNAL EXAMINATION Single Sideband Modulation: Principles, Balanced modulators, SSB generation	2011. 2. AcGraw Hill, rson, 6/e, 201 eed for te noise), gnal to d noise. index, nusoidal c circuits, N odulators, on, Filter	2013. 12. Hours 2 3 4 5	Exa Ma 15
3. To Reference 1. Bla 2. Sin 3. Tau 4. Tor Module	masi, Electronic Communications System , Pearson, 5/e, tes: ke, Electronic Communication system, Cengage, 2/e, 201 non Haykin, Communication Systems, Wiley 4/e, 2006. b, Schilling, Saha, Principles of communication system, Masi, Advanced Electronic Communications Systems, Pear Course Plan Contents Introduction, Elements of communication systems, Ne modulation Noise in communication system, Thermal noise (whit Shot noise, Partition noise, Flicker noise, Burst noise, Sig noise ratio, Noise factor, Noise temperature, Narrow band Amplitude modulation: Sinusoidal AM, Modulation Average power, Effective voltage and current, Nonsin modulation. Amplitude modulator circuits, Amplitude demodulator AM transmitters, Noise in AM Systems. FIRST INTERNAL EXAMINATION Single Sideband Modulation: Principles, Balanced modulation: Single Sideband Modulation: Principles, Balanced modulation: Noise Single Sideband Modulation: Principles, Balanced modulation: Noise Single Sideband Modulation: Principles, Balanced modulation: Mathematical Single Sideband Modulation: Principles, Balanced modulation: Principles,	2011. 2. AcGraw Hill, rson, 6/e, 201 eed for te noise), gnal to d noise. index, nusoidal c circuits, N odulators, on, Filter	2013. 12. Hours 2 3 4	Sei Exa Ma 15

IV	Angle modulation: Frequency modulation, Sinusoidal FM, Frequency spectrum, Modulation index, Average power, Non- sinusoidal modulation, Deviation ratio, Comparison of AM and FM.	4	15%
1	AM & FM Receivers: Super heterodyne receiver, Tuning range, Tracking, Sensitivity and gain, Image rejection, Double conversion, Adjacent channel selectivity, Automatic Gain Control (AGC).	4	1370
	SECOND INTERNAL EXAMINATION	1	
	Phase modulation, Equivalence between PM and FM, Sinusoidal phase modulation, Digital phase modulation.	3	20%
V	Angle modulator Circuits: Varactor diode modulators, Transistor modulators. FM Transmitters: Direct and Indirect Methods.	3	5
VI	Angle modulation detectors, Slope detector, Balanced slope detector, Foster-Seeley discriminator, PLL demodulator, Automatic Frequency Control (AFC), Amplitude limiters, Noise in	4	20%
	FM systems, Pre-emphasis and De-emphasis. Telephone systems, standard telephone set, basic call procedures and tones, DTMF, cordless telephones.	4	
(i)	END SEMESTER EXAM		· 3

#### Assignment

Study of

- 1. The telephone circuit Local subscriber loop, Private-line circuits, Voice-frequency circuit arrangements.
- 2. The public telephone network Instruments, Local loops, Trunk circuits and exchanges, Local central exchanges, Automated central office switches and exchanges.

# **Question Paper Pattern (End Sem Exam)**

#### Maximum Marks: 100

#### Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with maximum 60 % for theory and 40% for logical/numerical problems, derivation and proof.

Course code	Course Name	L-T-P- Credits	Year of Introduction
HS210	LIFE SKILLS	2-0-2	2016
<b>Prerequisite :</b>	Nil		

# **Course Objectives**

- To develop communication competence in prospective engineers.
- To enable them to convey thoughts and ideas with clarity and focus.
- To develop report writing skills.
- To equip them to face interview & Group Discussion.
- To inculcate critical thinking process.
- To prepare them on problem solving skills.
- To provide symbolic, verbal, and graphical interpretations of statements in a problem description.
- To understand team dynamics & effectiveness.
- To create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights of others.
- To learn leadership qualities and practice them.

## **Syllabus**

**Communication Skill:** Introduction to Communication, The Process of Communication, Barriers to Communication, Listening Skills, Writing Skills, Technical Writing, Letter Writing, Job Application, Report Writing, Non-verbal Communication and Body Language, Interview Skills, Group Discussion, Presentation Skills, Technology-based Communication.

**Critical Thinking & Problem Solving:** Creativity, Lateral thinking, Critical thinking, Multiple Intelligence, Problem Solving, Six thinking hats, Mind Mapping & Analytical Thinking.

**Teamwork:** Groups, Teams, Group Vs Teams, Team formation process, Stages of Group, Group Dynamics, Managing Team Performance & Team Conflicts.

**Ethics, Moral & Professional Values:** Human Values, Civic Rights, Engineering Ethics, Engineering as Social Experimentation, Environmental Ethics, Global Issues, Code of Ethics like ASME, ASCE, IEEE.

**Leadership Skills:** Leadership, Levels of Leadership, Making of a leader, Types of leadership, Transactions Vs Transformational Leadership, VUCA Leaders, DART Leadership, Leadership Grid & leadership Formulation.

## **Expected outcome**

The students will be able to

- Communicate effectively.
- Make effective presentations.
- Write different types of reports.
- Face interview & group discussion.
- Critically think on a particular problem.
- Solve problems.
- Work in Group & Teams
- Handle Engineering Ethics and Human Values.
- Become an effective leader.

## **Resource Book:**

*Life Skills for Engineers*, Complied by ICT Academy of Kerala, McGraw Hill Education (India) Private Ltd., 2016

## **References:**

- Barun K. Mitra; (2011), "Personality Development & Soft Skills", First Edition; Oxford Publishers.
- Kalyana; (2015) "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd.
- Larry James (2016); "The First Book of Life Skills"; First Edition; Embassy Books.
- Shalini Verma (2014); "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company
- John C. Maxwell (2014); "The 5 Levels of Leadership", Centre Street, A division of Hachette Book Group Inc.

	Course Plan			
Module	Contents		Hours L-T-P L P	
Ι	<ul> <li>Need for Effective Communication, Levels of communication; Flow of communication; Use of language in communication; Communication networks; Significance of technical communication, Types of barriers; Miscommunication; Noise; Overcoming measures,</li> <li>Listening as an active skill; Types of Listeners; Listening for general content; Listening to fill up information; Intensive Listening; Listening for specific information; Developing effective listening skills; Barriers to effective listening skills.</li> <li>Technical Writing: Differences between technical and literary style, Elements of style; Common Errors, Letter Writing: Formal, informal and demi-official letters; business letters, Job Application: Cover letter, Differences between bio-data, CV and Resume, Report Writing: Basics of Report Writing; Structure of a report; Types of reports.</li> <li>Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language cues; Kinesics; Proxemics; Chronemics; Effective use of body language</li> <li>Interview Skills: Types of Interviews; Ensuring success in job interviews; Appropriate use of non-verbal communication, Group Discussion: Differences between group discussion and debate; Ensuring success in group discussions, Presentation Skills: Oral presentation and public speaking skills; business presentations, Technology-based Communication: Netiquettes: effective e-mail messages; power-point presentation; enhancing editing skills using computer software.</li> </ul>	2	2	See evaluation scheme

II	<ul> <li>Need for Creativity in the 21st century, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity</li> <li>Critical thinking Vs Creative thinking, Functions of Left Brain &amp; Right brain, Convergent &amp; Divergent Thinking, Critical reading &amp; Multiple Intelligence.</li> <li>Steps in problem solving, Problem Solving Techniques, Problem Solving through Six Thinking Hats, Mind Mapping, Forced Connections.</li> <li>Problem Solving strategies, Analytical Thinking and quantitative reasoning expressed in written form, Numeric, symbolic, and graphic reasoning, Solving application</li> </ul>	2	2
	problems. Introduction to Groups and Teams, Team Composition,		
Ш	<ul> <li>Managing Team Performance, Importance of Group, Stages of Group, Group Cycle, Group thinking, getting acquainted, Clarifying expectations.</li> <li>Group Problem Solving, Achieving Group Consensus.</li> <li>Group Dynamics techniques, Group vs Team, Team Dynamics, Teams for enhancing productivity, Building &amp; Managing Successful Virtual Teams. Managing Team Performance &amp; Managing Conflict in Teams.</li> <li>Working Together in Teams, Team Decision-Making, Team</li> </ul>	3	2
	Working Together in Teams, Team Decision-Waking, TeamCulture & Power, Team Leader Development.Morals, Values and Ethics, Integrity, Work Ethic, Service	3	
IV	<ul> <li>Learning, Civic Virtue, Respect for Others, Living Peacefully.</li> <li>Caring, Sharing, Honesty, Courage, Valuing Time, Cooperation, Commitment, Empathy, Self-Confidence, Character</li> <li>Spirituality, Senses of 'Engineering Ethics', variety of moral issued, Types of inquiry, moral dilemmas, moral autonomy, Kohlberg's theory, Gilligan's theory, Consensus and controversy, Models of Professional Roles, Theories about right action, Self-interest, customs and religion, application of ethical theories.</li> <li>Engineering as experimentation, engineers as responsible</li> </ul>	3	2
	experimenters, Codes of ethics, Balanced outlook on. The challenger case study, Multinational corporations, Environmental ethics, computer ethics,	3	2

	Leadership Styles, VUCA Leadership, DART Leadership, Transactional vs Transformational Leaders, Leadership Grid,		2	
	Implications of national culture and multicultural leadership Types of Leadership, Leadership Traits.	2		
V	Growing as a leader, turnaround leadership, gaining control, trust, managing diverse stakeholders, crisis management	L	2	
	Introduction, a framework for considering leadership, entrepreneurial and moral leadership, vision, people selection and development, cultural dimensions of leadership, style, followers, crises.	4		
	Weapons development, engineers as managers, consulting engineers, engineers as expert witnesses and advisors, moral leadership, sample code of Ethics like ASME, ASCE, IEEE, Institution of Engineers(India), Indian Institute of Materials Management, Institution of electronics and telecommunication engineers(IETE), India, etc.	3		

## **EVALUATION SCHEME**

#### **Internal Evaluation**

(Conducted by the College)

**Total Marks: 100** 

# Part – A

# (To be started after completion of Module 1 and to be completed by 30th working day of the semester)

1. Group Discussion – Create groups of about 10 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation is as follows;

(i)	Communication Skills	2	10 marks
(ii)	Subject Clarity	-	10 marks
(iii)	Group Dynamics	-	10 marks
(iv)	Behaviors & Mannerisms	-	10 marks

(Marks: 40)

## Part – B

#### (To be started from $31^{st}$ working day and to be completed before $60^{th}$ working day of the semester)

2. Presentation Skills – Identify a suitable topic and ask the students to prepare a presentation (preferably a power point presentation) for about 10 minutes. Parameters to be used for evaluation is as follows;

10 marks

10 marks

10 marks

- (i) Communication Skills*
- (ii) Platform Skills**
- (iii) Subject Clarity/Knowledge

(Marks: 30)

* Language fluency, auditability, voice modulation, rate of speech, listening, summarizes key learnings etc.

** Postures/Gestures, Smiles/Expressions, Movements, usage of floor area etc.

# Part – C

# (To be conducted before the termination of semester)

3. Sample Letter writing or report writing following the guidelines and procedures. Parameters to be used for evaluation is as follows;

(i)	Usage of English & Grammar	-	10 marks
(ii)	Following the format		10 marks
(iii)	Content clarity	-	10 marks

(*Marks: 30*)

# **External Evaluation** (Conducted by the University)

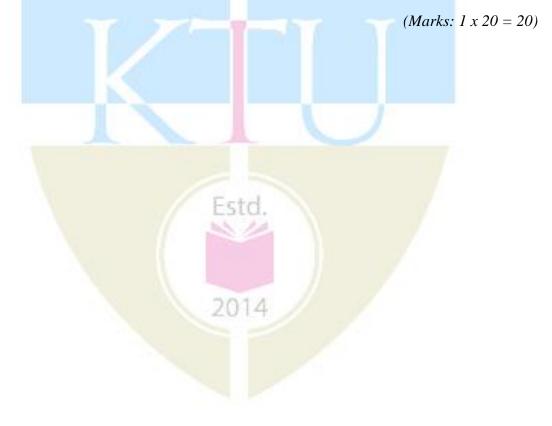
Total Marks: 50

Time: 2 hrs.

# Part – A

Short Answer questions

There will be one question from each area (five questions in total). Each question should be written in about maximum of 400 words. Parameters to be used for evaluation are as follows;


- (i) Content Clarity/Subject Knowledge
- (ii) Presentation style
- (iii) Organization of content

## Part – B

#### **Case Study**

The students will be given a case study with questions at the end the students have to analyze the case and answer the question at the end. Parameters to be used for evaluation are as follows;

- (i) Analyze the case situation
- (ii) Key players/characters of the case
- (iii) Identification of the problem (both major & minor if exists)
- (iv) Bring out alternatives
- (v) Analyze each alternative against the problem
- (vi) Choose the best alternative
- (vii) Implement as solution
- (viii) Conclusion
- (ix) Answer the question at the end of the case



COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION
EC232	ANALOG INTEGRATED	0-0-3-1	2016
	CIRCUITS LAB		
Prerequisite	Should have registered for EC204 Ana	log Integrated Cir	cuits
Course obje	ctives:	IZ A T	A A A
• To ac	quire skills in designing and testing anal	og integrated circu	uits
• To ex	pose the students to a variety of practica	l circuits using va	rious analog ICs.
	TECHNOL		AL
List of Expe	riments: (Minimum 12 experiments ar	e to be done)	/
	UNIVER	SILI	
1. Famil	iarization of Operational amplifiers -	Inverting and I	Non inverting amplifiers
-	ency response, Adder, Integrator, compa	rators.	
2. Meas	urement of Op-Amp parameters.		
	rence Amplifier and Instrumentation amp	olifier.	
	itt trigger circuit using Op –Amps.		
	l <mark>e</mark> and Monostable multivibrator using C	<b>)</b> p -Amps.	
	r IC NE555		
	gular and square wave generators using (		
	bridge oscillator using Op-Amp - without	ut & with amplitu	de stabilization.
	hase shift Oscillator.		
	sion rectifiers using Op-Amp.		
	e second order filters using Op-Amp (LF		BSF).
	filters to eliminate the 50Hz power line	frequency.	
	ltage regulators.		
	converters- counter ramp and flash type.		
	Converters- ladder circuit.		
	of PLL IC: free running frequency lock	range capture ran	ge
Expected ou			
	should able to:		
-	n and demonstrate functioning of variou		<b>C</b> 1
2. Stude	nts will be able to analyze and design va	rious applications	of analog circuits.

-/

COURSE	COURSE NAME	L-T-P-	YEAR OF
CODE	LOCIC CIDCUIT DESIGN LAD	C 0-0-3-1	INTRODUCTION 2016
EC230	LOGIC CIRCUIT DESIGN LAB	0-0-3-1	2016
	EC207 Logic circuit design		
Course object			
	ly the working of standard digital ICs and	basic buildin	g blocks
	ign and implement combinational circuits		A 5 4
	ign and implement sequential circuits	KAI	AAA
List of Experi	ments: -(Minimum 12 experiments are	to be done)	TAIVI
	TECHNOLO	10.10	$\Delta$
	ation of functions using basic and universa		
2. Design	and Realization of half /full adder and su	btractor using	g basic gates and universal
gates.	UNIVER	011	
3. 4 bit ad	lder/subtractor and BCD adder using 7483	3.	
4. 2/3 bit	binary comparator.		
5. Binary	to Gray and Gray to Binary converters.		
6. Study of	of Flip Flops: S-R, D, T, JK and Master S	lave JK FF u	sing NAND gates
7. Asynch	ronous Counter: Realization of 4-bit cour	nter	
8. Asynch	ronous Counter: Realization of Mod-N co	ounters.	
9. Asynch	ronous Counter:3 bit up/down counter		
10. Synchr	onous Counter: Realization of 4-bit up/do	wn counter.	
11. Synchr	onous Counter: Realization of Mod-N cou	unters.	
12. Synchr	onous Counter:3 bit up/down cou <mark>nt</mark> er		
13. Shift R	egister: Study of shift right, SIPO, SISO,	PIPO, PISO (	(using FF & 7495)
14. Ring co	ounter and Johnson Counter. (using FF &	7495)	
15. Realiza	ntion of counters using IC's (7490, 7492, 7	7493).	
16. Multip	lexers and De-multiplexers using gates an	nd ICs. (7415	0, 74154),
17. Realiza	ation of combinational circuits using MUX	K & DEMUX	
18. Randor	n sequence generator.		
19. LED D	isplay: Use of BCD to 7 Segment decode	r / dr <mark>iver chip</mark>	to drive LED display
20. Static a	and Dynamic Characteristic of NAND gat	e (M <mark>OS/TTL</mark>	)
Expected outo	come:	1	
The student sh	ould able to:	18. 9	
1. Design	and demonstrate functioning of various c	ombination c	ircuits
2. Design	and demonstrate functioning of various s	equential circ	cuits
2 E	on offectively as an individual and in a tag		1.1.41

3. Function effectively as an individual and in a team to accomplish the given task