VIDYA ACADEMT OF SCIENCE AND TECHNOLOGY TECHNICAL CAMPUS KILIMANOOR

(A Unit of Vidya International Charitable Trust)

Accredited by NAAC with B++ Grade

QUESTION BANK- 2019 SCHEME S4 ECE (2022-26 Batch)

Question Bank

Fourth Semester

MAT 204: PROBABILITY DISTRIBUTIONS, RANDOM PROCESS AND NUMERICAL METHODS

CLASS: S4 ECE

SI. No	QUESTIONS	Marks	KU/KTU (Month/Ye ar)
	MODULE 1		
1	 (1) A random variable X takes values 0,1, 2 and 3 with probabilities P(X = 0) = ⁸/₁₅, P(X = 1) = ¹/₃, P(X = 2) = P(X = 3) = ¹/₁₅ (a) Find the mean and variance of X. If Y = 1000 + 300X (b) Find P(Y ≥ 1500) and E[Y] (2) The joint probability distribution of X and Y is given by f(x, y) = ^(2x+3y)/₅₄ for x = 1, 2; y = 1, 2, 3. Find the (i) marginal distribution of X and Y (ii) the conditional distribution of X for Y = y (3) A random variable X takes the values -3, -2, -1, 0, 1, 2, 3 such that P(X = 0) = P(X > 0) = P(X < 0) and P(X = -3) = P(X = -2) = P(X = -1) = P(X = 1) = P(X = 2) = P(X = 3). Obtain the probability mass function and distribution function 	7+7+7	KTU- July 2017 May 2019 July 2021 June 2022
	of X.		
2	 In an examination, a candidate has to answer 15 multiple choice questions each of which has 4 choices for the answer. He knows the correct answer to 10 questions and for the remaining 5 questions he chooses the answer randomly. (a) What is the probability that he answers 13 or more questions correctly? (b) What is the mean and variance of the number of correct answers he gives? 	7	KTU- July 2017
3	The joint distribution of a two-dimensional random variable (X, Y) is given by P(X, Y) = $c(2x + 3y)$, $x = 0, 1, 2 : y = 1, 2, 3$. Find i) the value of c ii) the marginal distributions iii) Are X and Y independent?	7	KTU-May 2017
4	 A box contains 100 cell phones, 20 of which are defective. 10 cell phones are selected for inspection. Find the probability that at least one is defective 	7+7+7	KTU JULY 2017 May 2019

	ii. at most three are defective		July 2021
	iii. none of them are defective		
	iv. all of them are defective.		
	2) The monthly breakdown of a computer follows Poisson		
	distribution with mean 1.2. Find the probability that this computer		
	will function for a month		
	1. without a break down		
	11. with only one breaks down		
	111. With at most two break down		
	 3) The probability of an item produced by a certain machine will be defective is 0.05. If the produced items are sent to the market in packets of 20, find the number of packets containing (a) at least 2 (b) exactly 2 		
	 (c) exactly 2 (c) at most 2 defective items in a consignment of 1000 packets using Poisson distribution 		
	The probability that an electric component manufactured by a firm is defective is 0.01. If the produced items are sent to the market in		
	packets of 10, find the number of packets containing exactly two		VTL Annil
5	defectives and at most two defectives in a consignment of 1000	7	XIU-April 2019
	packets using		2018
	(i) binomial distribution and		
	(ii) Poisson approximation to binomial distribution		
	1) The probability distribution of a discrete random variable X is		
	given by $p(X = x) = \frac{k}{2x}$, $x = 0, 1, 2, 3, 4$. Find		
	(a) the value of k		
	(b) the probability that X is even		
	(c) $P(X < 2)$		VTI I
6	(d) $E(X)$.	7 2	NIU MAV 2017
0		7+3	$\frac{MAT}{2017}$
	2) The probability mass function of a discrete random variable is		JUL 1-2021
	p(x) = kx, x = 1, 2, 3 where k is a positive constant. Find		
	(a) The value of k		
	(b) $P(X < 2)$		
	(c) $VAR(1-X)$		
	(a) Show that Poisson distribution is the limiting case of binomial		
7	distribution.	7,7,7	
/	(b) Derive the mean and variance of Binomial distribution	/+/+/	JUL I - 2021
	(c) Derive the mean and variance of Poisson distribution		JUNE-2022
	The probabilities that there will be $0, 1, 2, 3$ power failures for a		KTU-
8	certain machine in the month of June are 0.4 0.3 0.2 0.1	3	JUNE
	respectively Find the mean and variance for the number of failures		2022
1	respectively. I had the mount and variance for the number of fallures.		1

9	If <i>X</i> is a Poisson variable such that $[X = 1] = P[X = 2]$, then find $P[X = 3]$.	3	KTU- JUNE 2022
10	The number of gamma rays emitted per second by a certain radioactive substance follows a Poisson distribution with mean 8. Determine the probability that (i) three particles are emitted in one second (ii) at most one particle is emitted in one second (iii) more than one particle is emitted in one second.	7	KTU- JUNE 2022
11	The joint probability mass function of two random variables X and Y is given by $p(x, y) = \begin{cases} k(x + 2y), \text{ for } x = 1, 2, 3 \ y = 1, 2 \\ 0, \text{ otherwise} \end{cases}$ where k is a constant. (i) Find the value of k (ii) Find the value of k (iii) Find the marginal density functions of X and Y and (iv) Are X and Y independent?	7	KTU- JUNE 2022
	MODULE 2		
1	 i. The time for super glue to set can be treated as a random variable having a normal distribution with mean 30 seconds. Find the standard deviation if the probability is 0.20 that it will take on a value greater than 39.2 seconds. ii. 1000 light bulbs with mean length of life 120 days are installed in a factory. Their length of life is assumed to follow normal distribution with S.D 20 days. How many bulbs will expire in less than 90 days? If it is decided to replace all the bulbs together, what interval should be allowed between replacements if not more than 10% should expire before replacement? iii. The mileage which a car owner gets with a certain kind of tyre is a random variable having an exponential distribution with mean 60,000 km .Find the probability that one of the tyres will last(i) at least 50,000km (ii)at most 60,000 km 	7+7+7	KTU- May 2017 May 2019 July 2021
2	Buses arrived at a specific stop at 15 minutes interval starting at 7 am. A passenger arrives at the stop at random time between 7 and 7.30 am. Find the probability that he waits 1) less than 5 minutes 2) at most 12 minutes?	7	KTU-MAY 2017
3	 Suppose a new machine is put into operation at time zero. Its life time is an exponential random variable with mean life 12 hours. (i) What is the probability that the machine will work continuously for one day? ii) Suppose the machine has not failed by the end of the first day, what is the probability that 	7	KTU-March 2017

	it will work for the whole of the next day?		
4	The lifetime of a battery is exponentially distributed. 40% of such batteries do not last longer than 1000 hours. Mr. Kumar purchased such a battery which is already used for 500 hours. What is the probability that it will last another 1000 hours?	7	KTU-March 2017
5	b) Find the mean and variance of uniform distributionc) Find the mean and variance of exponential distribution	7+7	KTU- May 2019 May 2017
6	The probability density function of a random variable is given by $f(x) = \begin{cases} kx^2, \ 0 < x < 1 \\ 0, \ \text{otherwise} \end{cases}$ Find (a) k (b) Mean (c) $p\left(\frac{1}{4} < X < \frac{3}{4}\right)$ (d) $p\left(X > \frac{2}{3}\right)$	7	KTU- July 2017
7	 The joint pdf of two continuous random variables X and Y is F(x,y) = {8xy, 0 < y < x < 1} 0, otherwise i. Check whether X and Y are independent ii. Find p(X + Y < 1) The joint pdf of two continuous random variables X and Y is given by f(x,y) = {kxy, 0 < x < 4, 1 < y < 5} 0, otherwise (i) k (ii) The marginal distributions of X and Y (iii) Check whether X and Y are independent 	7+7	KTU April 2019 June 2022
8	 A factory has two outlets to sell its products. The daily sale from the first outlet is uniformly distributed between Rs. 50,000 and 60,000 and from the second outlet is uniformly distributed between 40,000 and 60,000. The sales of the outlets are independent. (i) What is the probability that the total sales from both the outlets combined is more than RS.100000. If 20% of the amount from the sales is profit, find the expected daily profit from both the outlets combined, and the variance of the profit. 	7	KTU- July 2017
9	A continuous random variable <i>X</i> is uniformly distributed in $(-k, k)$. Find <i>k</i> if $P[X \ge 2] = 0.25$.	3	KTU- June 2022
10	If $X_1, X_2,, X_n$ are random variables with mean $\mu = 2$ and variance $\sigma^2 = 2$, then use central limit theorem to estimate $P[110 \le S_n \le 150]$, where $S_n = X_1 + X_2 + \dots + X_n$ and $n = 75$.	3	KTU- JUNE 2022
11	 Suppose the diameter at breast height (in.) of trees of a certain type is normally distributed with mean 8.8 and standard deviation 2.8 (i) What is the probability that the diameter of a randomly selected tree will be at least 10 in.? (ii) What is the probability that the diameter of a randomly selected tree will exceed 20 in.? (iii) What is the probability that the diameter of a randomly selected tree will exceed 20 in.? 	7	KTU- JUNE 2022

12	 The time (in hours) required to repair a machine is exponentially distributed with mean 2. (i) What is the probability that the repairing time exceeds 2 hours? (ii) What is the conditional probability that a repair takes at least 10 hours given that its duration exceeds 9 hours? 	7	KTU- JUNE 2022
13	 The joint probability density function of two continuous random variables X and Y is given by f(x, y) =	7	KTU- JUNE 2022
	MODULE 3		
1	 (a) A computer generates 100 random numbers which are uniformly distributed between 0 and 1. Find approximately the probability that their sum is at least 50. (b) Assume that X(t) is a random process defined as follows: X(t) = A cos(2πt + Ø) where A is a zero-mean normal random variable with variance σA² = 2 and Ø is uniformly distributed random variable over the interval -π ≤ φ ≤ π. A and φ are statistically independent. Let the random variable Y be defined as Y = ∫₀¹ X(t)dt. Determine (i) the mean of z (ii) the variance of Y. 	7+7	KTU- MAY 2017 June 2022
2	Prove that the random process X(t) is defined by X(t) =asin($\omega t + \theta$), where a and ω are constants and θ is a random variable Uniformly distributed in [0, 2π] is WSS process.	7	KTU-MAY 2018
3	 (a) Consider the random process X(t) = A cos(ωt + θ) where A and θ. Is uniformly distributed random variable in (0, 2π). Check whether or not the process is WSS. (b) A random process X(t) is defined by X(t) = Y(t) cos(ωt + θ), where ω is a constant and θ is a random variable which is uniformly distributed in [0, 2π] and is independent of Y(t). Show that X(t) is a WSS process 	7+7	KTU-April 2018
4	If $X(t) = f(t)$ is a stochastic process ,find $E(X(t))$, $R(t1, t2)$ and $C(t1, t2)$	7	KTU-April 2018
5	Let $X(t) = A \sin t + B \cos t$ be a process where A and B are	7	KTU-

	independent random variables with zero mean and equal variance show that the process is WSS		APRIL 2018
6	Find the spectral density function of the WSS process whose auto correlation function is e^{-xy^2}	7	KTU-May 2019
7	Find the power spectral density of a wide sense stationary process (<i>t</i>) with autocorrelation function $RX(\tau) = e^{-3} \tau $.	7	KTU- JULY 2017
8	 (a) Find the autocorrelation function and average power of a wide sense stationary process X(t) with power spectral density given by S_X(ω) = {1 - ω, ω ≤ 1 0, otherwise (b) Car arrives at a gas station according to a Poisson process at an average rate of 12 cars per hour. The station has only one attendant. If the attendant decides to take a 2-minute coffee break when there are no cars at the station. What is the probability that one or more cars will be waiting when he comes back from the break given that any car that arrives when he is on coffee break waits for him to get back? 	7	KTU- April 2018 June 2022
9	 (a) Show that the random telegraph signal process is WSS. (b) Given any two example of a continuous time discrete random processes. (c) How will you calculate the mean, variance and total power of a WSS process from its auto correlation function? 	7+3+7	KTU- April 2017
10	 The number of enquiries arriving at a call centre is a Poisson process with rate 5 per hour. (i) Find the probability that there would be 3 calls between 10 AM and 11 AM and 4 calls between 2 PM and 4 PM. (ii) A call is categorized as 'long' if it lasts more than 10 minutes. (iii) The probability that an arriving call is long is 0.2. Find the probability that the time between two consecutive long calls is less than 1 hour. 	10	KTU-JULY 2017
11	 (a) Find the probability distribution of the time between two consecutive arrivals in a Poisson process. (b) Define stationary random process. Define two types of stationary random process. (c) Write down the properties of the power spectral density 	5	KTU-JULY 2017
12	Determine the autocorrelation function of the random process with the power spectral density given by $S_{XX}(w) = S_0 w < w0$ = 0 otherwise	7	KTU- June 2022
13	The radioactive source emits particle at the rate of 6 per minute in accordance with Poisson process. Each particle emitted has the probability of 1/3being recorded. Find the probability that at least 5 particles are recorded in 5 minutes	3	KTU-May 2019
14	(a) A random process is defined by $X(t) = Acos\omega t, t \ge 0$ where ω	3+7	KTU June

	is a const	ant and	A is u	niformly	y distril	buted ir	n (0, 3)).				2022
	Determin	E[X(t)]	t)].									
	(b) Show that	it the rai	ndom p	process	defined	by(t)	=Asin($\alpha t + \theta$), whe	re		
	A and α a	are cons	tants a	nd θ is	a rando	m varia	able ur	hiforn	nly			
	distribute	ed in [0,	2π] 1S	a wide s	ense st	ationar	y proc	ess.				
15	A random pr	ocess X	(t) has	s the aut	o corre	elation f	unctio	n R_X	$(\tau) =$		2	KTU June
15	$25 + \frac{8}{4 + r^2}$. F	Find the	mean-	square v	value ai	nd varia	ance of	f the j	process		3	2022
	4+1-											
					MOI	DULE	4					
	(a) Using Ne	wton-R	aphson	n metho	d, com	pute a r	eal roo	ot of	$e^{2x} -$			
	x - 6 =											
	(b) Write the	e Newto	n-Rapl	hson iter	ration f	ormula	to fine	d the	cubic			KTU-
1	root of a	positive	numb	er							7+7+7	April 2018
-	(c) Using Ne	wton R	aphsor	n metho	d to sol	ve the	equation	$n x^3$	+x -		, , , , , ,	June 2022
	1 = 0	correct	to 4 de	ecimal p	laces							July 2021
	(d) Using N	ewton-l	Raphso	on metho	od to fi	nd a not	n-zero	solut	tion of			
	f(x) = 2	$\frac{2x-\cos x}{x}$	s x = 0)	1 1 0	1.1	1	• 1	6()			
•	Using Lagran	nge's in	terpola	tion me	thod fi	nd the j	olyno	mial	f(x)		7	KTU- MAY
2	which agree	with the	data	f(-1)	= 3, f	(0) = -	-4, <i>f</i>	(1) =	=		/	2017
	5 and f(2) =	= -6		· . 1			1:66		:			
	The speed of a moving particle was measured at different points of											
	time. The time t when the first measurement was recorded is taken as $t = 0$. Subsequent speeds at different times are as shown in the									as		
	t = 0. Subsequent speeds at different times are as snown in the following table											
	Time(t) in		10	20	30			50	60			KTI
3	seconds	0	10	20	50		,	50	00		7	APRII
5	Velocity	35	39	44	50	56	5	43	40		,	2018
	(\mathbf{v}) in	55	07		00		,	10				2010
	m/sec											
	Using Simps	on's on	e-third	method	l, evalu	ate the	distan	ce tra	velled	by		
	the particle in	n 60 sec	onds.		,					•		
	Health surve	ys are c	onduct	ed in a	city eve	ery 10 y	ears.	The f	ollowir	ıg		
	data gives the	e numbe	er of pe	eople (ii	n thous	ands) h	aving	heart	disease	es		
	as found from	n the re	cords o	of the su	rvey							
4	Year	: 190	51	1971	19	81	1991	20	01 20)11	7	KTU-MAY
	No. of peop	le: 16)	19	2	23	28	3	4	41		2017
	Use Newton ²	's interp	olation	n metho	d to est	imate t	he nun	nber (of peop	le		
	with heart dis	seases i	n the y	ear 200	5							
	(a) Evaluate	$\oint_{0}^{6} \frac{1}{1+}$	$\frac{1}{r^2}$ dx	using	(1) Traj	pezoida	l rule	(2) S	impson	's		
	rule with	6 equa	ninterv	vals.								KTU-
5	(b) Use trape	ezoidal	rule to	evaluat	$e \int_0^1 y d$	dx for t	he foll	lowin	ig data		7+7	MAY 2017
	X	0	0.2	0.4	0).6	0.8	1				June 2022
	у	0	0.04	0.1	6 0).36	0.64	1				

	Using Newton's forward interpolation formula estimate sin 52 given										VTU MAV
6	θ	45		50	55	5	60		65	7	KIU-MAY 2017
	$\sin \theta$	0.7071	0	.7660	0.81	92	0.8660) (.9036		2017
	Using Lagr	ange's po	lynor	nial esti	mate f	(1.5)) for the f	ollow	ing data		
7	X	0		-	1		2		3	7	
	f(x)	0		0.9	826	C).6299	0.	5532		
8	Find the roo	t of the eq	Juatio	n cos x	$-xe^x$	= 0 t	that lies b	etwee	n 0 and	7	KTU June
	I, using Reg	ula- talsi	meth	od, corr	ect to f	our c	lecimal p	laces.	(1)		2022
9	$(1 \ 3) (2 \ 12)$	ation of t (5)	147)1	tve that	passes	inter	nolation f	formul	0, 2), a Also	7	KTU June
	find (3) .	<i>a</i>) and (3,	147)	by Lugit	unge s	men	polation	lormu	d. 71150	/	2022
	Given a fund	tion y =	f(x)	by the f	ollowir	ng tal	ble. Using	g New	ton's		
10	interpolation	formula,	find	(0.2).		0	· · · ·			-	KTU June
10	x 0	1		2	3		4	5	6		2022
	y 176	18	5	194	20	3	212	220	229		
	Evaluate \int_{1}^{1}	dx using	Simp	son's or	ne third	rule.	. Find the	error	bv		
11	comparing v	ith actua	l inte	pration 1	in to fo	our de	ecimal pla	aces	(Take h	7	KTU June
	= 1/6	ini uotuu	1 11102	Sitution	up to 10		eennar pr	aces.	(Tuke II		2022
-					MOI		F 5				
	1				MOI	JUL	E 5				
1	Using Rung	e-Kutta n	nethoo	l of orde	er four,	com	pute y(0.2	2) giv	en that	7	KTU-MAY
1	$\frac{dy}{dx} = e^x + y$, y(0) =	= 0. T	ake step	size h	= 0.1	1.			/	2017
2	Use Euler Method with $h = 0.1$ to find y at $x = 0.3$ for the equation										KTU- May
2	$\frac{dy}{dy} = \frac{y}{1+y}$, y(0) =2								3	2017
	Apply Rung	e-Kutta N	/letho	d of ord	er 4 fi	nd ar	approxi	mate v	alue of		KTU-
3	x when $x = 0$	$\sim 1 \times 1 \times 1$	dy _	x^2	and $y(l)$	(10.01)	– 1 7270	mate v		7	APRIL
	y when $x = 0.7$ given $\frac{dx}{dx} = y$ and $y(0.0) = 1.7373$.										2018
4	Use Runge-	Kutta met	hod c	of order	4 to fin	ld y(((0.2) for the	e diffe	rential	7	KTU-MAY
	equation y	= 3x + 0	.5 <i>y</i> , j	y(0) =	$\frac{1}{1}$	e n =	= 0.2)	v(0, 1)) and		2019
5	v(0,2) using	Fuler me	thod	ben y	= y + x	κ, y(t	<i>))</i> =0, 1110	y(0.1) and	3	Model qp
6	Explain the	principle	of lea	st squar.	res for a	leter	mining a	line of	f best fit	3	Model qp
	to a given da	ata									
	a) Using C	auss-Seid	del m	ethod, s	olve the	e foll	owing sy	stem o	of		
	equations										
	20x + y - 2z = 17										
7			3x +	- 20 <i>y</i> –	z = -	18				7+7	June 2022
		:	2x -	3y + 20	Dz = 2	5					July 2021
	b) Solve t	he syster	n of	equatio	ns Us	sing	Gauss-Se	eidel	teration		
	method	starting v	vith tł	ne initial	l appro	xima	tion (0, 0	$(, 0)^T$			

			$2x_1 +$	$4x_2 + x_3$	= 4		_				
	The table millions)										
	ye	ear	1980 1985 1990 1995								
8	popu	lation	227	237		249	2	62		7	Model qp
	Plot a gra the metho year 2010	nph of this od of least).	data and squares.	fit an app Hence pro	ropriate edict the	curve popula	to the ation f	data usifor the	ing		
9	Use Rung initial valu		7	Model qp							
10	Solve the taking ste Runge-K Adam-M		7	Model qp							
11	Write the for fitting	normal e g a parabol	quations of $a = a - b$	btained bt $bx + cz$	y the m c^2	ethod o	of leas	t square	s	3	KTU June 2022
12	Given the the secon $x = x_0 + $	e initial va d order R <i>h</i> .	lue proble unge-Kutt	x = f a algorith	(<i>x, y</i>), v im to fir	with $y($ and the v	$(x_0) =$	y_0 . Wr	ite en	3	KTU June 2022
13	Given y' Runge-K	= 1 + xy utta metho	y, y(0) =	2. Find y ing $h = 0$	at $x = 0.1$	0.1, usi	ng fo	urth ord	er	7	KTU June 2022
	a) By th the fo	e method ollowing d	of least sc ata	juares, fir	nd the st	raight l	ine th	at best f	ïts		
		X	1	2	3		4	5			KTU
14		у	14	27	40	4	55	68		7+7	June 2022
	b) Fit a	straight-lii	ne $y = ax$	+ b for	he follo	wing d	ata				July 2021
	X	1	3	4	6	8	9	11	14		
	<u>y</u>	1	2	4	4	5	7	8	9		
15	Using New from the f	wton's div following (vided diffe data	rence for	mula, ev	valuate	y(8)	and $y(1)$	15)	7	KTU
13	X	4	5	7	10		11	13		1	July 2021
	Y	48	100	294	900) 1	210	2028	3		

ECT 202: ANALOG CIRCUITS

MODULE 1									
Sl. No.	Questions	Μ	Year						
1.	Design a differentiator circuit to differentiate a square wave input of 20V peak to peak amplitude and 1.5KHz frequency.	3	June 2023						
2.	Explain thermal run away.	3	June 2023						
3.	Draw the d.c. load line and determine the operating point of the given circuit. Assume the transistor to be of silicon. Take, $\beta=100.$	8	June 2023						
4.	Draw the circuit and explain the working of an RC integrator circuit for a square wave input with period T. Sketch its output waveform for RC \gg T, RC \ll T and RC = T.	6	June 2023						
5.	With necessary diagrams, explain the voltage divider biasing method of BJT. Derive the expression for stability factor also.	8	June 2023						
6.	Set up and explain a slicer circuit that clips an input sine wave at +3V and -6V. Draw the transfer characteristics.	6	June 2023						
7.	Define Stability factor. Derive the expression for stability factor 'S'.	3	June 2022						
8.	With necessary diagrams, explain any two biasing method of BJT.	8	June 2022						
9.	Given an input wave, $Vin=10sin\omega t$. Setup and explain a clamper that clamps the wave to 22.3V at the positive peak, assuming a voltage drop of 0.7 V across 8 the diode. Draw the output waveform and transfer characteristics also.	8	June 2022						
10.	Design a fixed bias circuit for a CE amplifier such that operating point is VCE =8V and IC = 2 mA. Given, a fixed 15V d.c supply and a silicon transistor with β = 100. Take base emitter voltage VBE = 0.6V and neglect RE.	6	June 2022						
	MODULE 2								
1	What is the significance of Miller effect on high frequency amplifiers?	3	June 2023						
2	Explain how the presence of r0 in hybrid π model of CE configuration justifies Early effect.	3	June 2023						

3	Using small signal hybrid π model, obtain the expression for input impedance, output impedance and mid band voltage gain of a common emitter amplifier.	8	June 2023
4	Draw the high frequency hybrid π model of BJT in CE configuration and explain the significance of each parameter.	6	June 2023
5	Using hybrid π model, calculate the small signal voltage gain, current gain, input impedance and output impedance of the given circuit, having R1=47K Ω , R2=10K Ω , RC=2.7K Ω , RE=680 Ω , RL=22K Ω VCC=15V, VBE=0.7V, VA=80V, Ic= 2mA and β =100. (Neglecting r0).	14	June 2023
6	Given K= 0.4 mA/V ² and ID(ON) = 3.5 mA with VGS(ON) = 4 V. Determine the value of VTH.	3	June 2022
7	Draw and explain the frequency response of RC coupled amplifier.	6	June 2022
8	Using hybrid π model, calculate the small signal voltage gain, input impedance and output impedance of the given circuit. Given, V _{BE} =0.7V, V _A =80V, Ic = 2mA and β =100. (Neglecting ro) V_{CC} +12 V V_{CC} +12 V	14	July 2021
9	Three stages of individual RC coupled amplifier having midband gain of 80 with lower cutoff frequency of 100Hz and upper cutoff frequency of 300MHz are cascaded. Find the resultant	7	July 2021

	gain and cutoff frequencies.		
10	Design an RC coupled amplifier for a gain of 200, given that Vcc=15V and Ic	14	July 2021
	=3.2mA and required input impedance is 1.44KΩ. Find the lower cutoff		0019 2021
	frequency of the amplifier. Assume capacitor values appropriately if necessary.		
	Draw the small signal high frequency CE model of a transistor and give the		
	order of magnitudes of each capacitance and resistance.		
	MODULE 3		
1	Given K= 0.4 mA/V2 and ID(ON) = 3.5 mA with VGS(ON) = 4 V. Determine VTH.	3	June 2023
2	What are the effects of cascading in gain and bandwidth of an amplifier?	3	June 2023
3	Explain any two biasing techniques for enhancement MOSFET.	8	June 2023
4	Calculate the drain current and drain-to-source voltage of a	6	June 2023
	common source circuit with an n-channel enhancement mode		
	$P_1 = 22KO P_2 = 10KO P_2 = 68KO VDD = 8V VT = 1V$		
	$K_1 = 22K_2^2, K_2 = 10K_2^2, K_D = 0.0K_2^2, V_D = 0.0, V_1 = 1.0, K_1 = 0.1 mA/V2$		
5	Draw the circuit of a common source amplifier using MOSFET. Derive the expressions for voltage gain, input resistance and	8	June 2023
	output resistance from small signal equivalent circuit.	6	1 2022
6	load.	6	June 2023
7	What are the effects of cascading in gain and bandwidth of an amplifier?	3	June 2022
8	Draw the CS stage with diode connected load and deduce the expression for voltage gain of the amplifier.	8	June 2022
9	Calculate the drain current and drain-to-source voltage of a	6	June 2022
	common source circuit with an n-channel enhancement mode		
	MOSFET. Find the power dissipated in the transistor.		
	R1=22K Ω , R2=10K Ω , RD=6.8K Ω , VDD=8V, VT=1V, Kn=0.1mA/V ²		
10	Briefly explain a Cascode amplifier.	6	June 2022
	MODULE 4		
1	Explain Barkhausen criteria for sustained oscillations.	3	June 2023
2	Illustrate the effect of negative feedback on gain of the amplifier.	3	June 2023
3	With neat circuit diagram, explain the working of Wien bridge oscillator. Explain how Barkhausen criterion for oscillation is satisfied by the circuit and derive the expression for the frequency of oscillation.	14	June 2023
4	Explain the working principle of crystal oscillator with neat diagram.	5	June 2023

5	Differentiate positive feedback and negative feedback.	3	June 2022
6	Give the block schematic of current-series feedback amplifier configuration and deduce the expression for gain, input impedance and output impedance with feedback.	9	June 2023
7	Draw the block diagrams of current series and current shunt feedback.	3	June 2022
8	With neat circuit diagram, explain the discrete BJT circuit in voltage-series feedback and derive the expression for voltage gain, input impedance and output impedance.	14	June 2022
9	Design wein-bridge oscillator using BJT to generate 1KHz sine wave.	9	June 2022
10	With neat circuit diagram, explain the working of Hartley oscillator	5	June 2022
	MODULE 5		
1	What is line regulation and load regulation in a voltage regulator?	3	June 2023
2	What do you mean by crossover distortion? How it can be eliminated?	3	June 2023
3	Explain the working of transformer coupled Class A power amplifier with a neat circuit diagram and collector waveforms. Derive the expression for collector efficiency.	14	June 2023
4	With a neat circuit diagram, explain how output voltage can be regulated by using series feedback voltage regulator. How short circuit protection can be implemented in this?	14	June 2023
5	Illustrate the principle of output current boosting circuit in a voltage regulator?	3	June 2022
6	What do you mean by crossover distortion? How can it be eliminated?	3	June 2022
7	What are the factors affecting the variation in output voltage of voltage regulator? With a circuit diagram, explain how load and line regulations areachieved in a shunt voltage regulator.	14	June 2022
8	Explain the working of Class B push-pull power amplifier with a neat circuit diagram and output waveforms. Derive the expression for collector efficiency	14	June 2022
9	Explain short-circuit protection with the support of figures.	8	KTU Model
10	Explain foldback protection with the support of figures.	7	KTU Model Question

SI	Question	Marks	Month
No			and Year
	MODULE 1		OI Exam
1	Sketch the signal $x(t) = [e^{-t}u(t)]\sum_{n=-a}^{a} \delta(t - nT)$ where T is any positive integer.	3	June 2022
2	What is the output sequence of an LTI system with impulse response $h(n)=[2, 2]$ to the input $x(n)=[1, 2, 3, 1]$?	3	June 2022
3	Determine whether the following system is static, time invariant, linear and causal. (x and y denote input and output respectively). Explain each. $y(t) = t^2 x(t) + x(t-2)$	8	June 2022
4	Check whether the following signals are energy or power signals. i. $x(t) = e^{-a t }$; $a > 0$ ii. $x(t) = tu(t)$	6	June 2022
5	Find the output of an LTI system with impulse response $h(t)$ to the input $x(t)$. Given $x(t) = u(t) - u(t - 2)$ and $h(t)$ is shown in Figure 1.	8	June 2022
	1 2 t Figure 1		
6	Sketch the signals (i) $y(t) = u(0.5t + 2)$ (ii) $y(n) = u(n) + u(n - 5)$	6	June 2022
7	Demonstrate the relationship between Unit step, Unit ramp and Unit Impulse functions.	3	June 2023
8	Determine the period if the signal, $\cos\left(\frac{\pi}{3}n\right) + \sin\left(\frac{\pi}{4}n\right)$ is periodic.	3	June 2023
9	Find the convolution of signals given by $x(t) = \begin{cases} 1, 0 \le t \le 2\\ 0, elsewhere \end{cases} h(t) = \begin{cases} 1, 0 \le t \le 3\\ 0, elsewhere \end{cases}$ Plot the output signal also	8	June 2023
	State and prove the time scaling property of CTFT	3	
10	Check for shift invariance & linearity the systems represented by $y(t) = x^2(t-1)$	3	
11	Given x(t). Sketch a. $x(-t)$, b. $x(t+2)$ c. $x(t-1)$ d. $x(t/2)$ e. $x(2t)$	10	

ECT 204 SIGNALS AND SYSTEMS

12	What is the output y(n) for a LTI system with impulse response	6	
	h(n)=(1,2,1) for an input sequence		
	X(n) = (1,3,3,2,1).		
1	State the Dirichlet's conditions for the convergence of Fourier	3	June 2022
	series.	-	
2	Prove time-shifting property of Laplace transform	3	June 2022
3	Find the complex exponential Fourier series of the periodic signal	8	June 2022
	shown in Figure 2.		
	v ^{x(t)}		
	$\frac{1}{-T} \qquad 0 \qquad T \qquad 2T \qquad 3T \qquad t \qquad Figure 2$		
4	If $x(t)$ has a Fourier Transform, find the Fourier Transform of $x_1(t) = x(4t - 3)$ $x_2(t) = \frac{d}{2}x(t - 3)$	6	June 2022
5	Find the Fourier Transform of the signal $x_1(t)$ shown in Figure 3	8	June 2022
5	using convolution property and time shift property of Fourier Transform. $x_1(t)$ $x_1(t)$ $x_1(t)$ t T T T T T T T T	0	June 2022
6	Figure 3	6	Juna 2022
0	$x(t) = (e^{-2t} + 3e^{-3t})u(t)$	0	June 2022
7	Find the Laplace Transform of $x(t) = e^{-2t}[u(t) - u(t-2)]$	3	June 2023
8	Using convolution property of Laplace transform, determine the	3	June 2023
	Laplace transform of system response when the input signals and		
	impulse responses are:		
0	$x(t) = u(t), h(t) = e^{-t}u(t) - e^{-2t}u(t)$	0	Juna 2022
7	waveform.	0	June 2025
	-3 -2 -1 -1 -1 -1 -1 -1 -1 -1		
10	Use the differentiation property to determine the FT of the triangular pulse given.	6	June 2023

	x(t)		
	-1 0 1		
11	Find the Fourier Transform of	8	June 2023
	a. $\cos(\omega_0 t) u(t)$		
10	b. $e^{-t}\sin(5t)u(t)$		1 2022
12	Determine the Laplace Transform of $x(t) = \begin{cases} A, 0 < t < \frac{T}{2} \\ -A, \frac{-T}{2} < t < T \end{cases}$		June 2023
13	Find the complex exponential Fourier series for the function shown for $T_0=4.8$.	8	June 2023
	x(t)		
	-T _o -T _o +T ₁ -T ₁ 0 T ₁ T _o -T ₁ T _o		
14	Determine FT of the signal given below.	6	June 2023
	2 x(t)		
	0 1 2 3 4 5		
	-1		
	MODULE 3		x 0000
1	A continuous time signal $(t) = \cos 40t - \cos 60t$ is sampled with a time period T. Cap (t) he recovered from the samples	3	June 2022
	with a time period T. Can (t) be recovered from the samples (nT) for $=\pi/30$? State the reason for the same		
2	Find the frequency response $H(\omega)$ and impulse response of an	3	June 2022
	LTI system characterized by the differential equation		
	$\frac{dy(t)}{dt} + ay(t) = x(t); a > 0$		
3	$\frac{dt}{dt} = \pi(t), t > 0$	7	June 2022
5	transfer function	/	June 2022
	$H(s) = \frac{3s}{1-s}$		
4	$2s^2+10s+12$ Determine the Nyquist rate of sampling for the signals	7	June 2022
-	1. $x(t) = \cos(150\pi t)\sin(50\pi t)$,	3 uno 2022
	2. $x(t) = \sin(150\pi t)\sin^2(50\pi t)$		
5	A continuous time LTI system is described by the differential	7	June 2022
	equation		
	$\frac{ay(t)}{dt} + 5y(t) = x(t)$		
6	Determine the response of the system to the input	7	June 2022
	$x(t) = e^{-2t}u(t)$ using Fourier Transform.	-	
7	Consider the continuous time signal	7	June 2022

	$x(t) = \cos(200\pi t) + \sin(320\pi t)$. What will be the Nyquist rate of sampling for the signal? If the signal is sampled at 300samples/sec, write the discrete time signal [n] obtained after		
	sampling. What will be the frequency components at the output if the sampled signal is passed through an ideal low pass filter with cut off frequency 250Hz?		
8	Describe the aliasing effect in sampling with the help of sketches.	3	June 2023
9	Consider the LTI system with input $x(t) = e^{-t}u(t)$ and impulse	6	June 2023
	response $n(t) = e^{-st} u(t)$ 1 Using Convolution property determine the Laplace		
	Transform $Y(s)$ of the output $y(t)$		
	2. Find v(t), from the Y(s) obtained in (i).		
10	Explain with the help of figures, the effect of sampling in the	8	June 2023
	frequency domain for the following cases:		
	1. 11Spectrum of sampled signal with $\omega_s > 2\omega_M$		
	2. Spectrum of sampled signal with $\omega_s < 2\omega_M$		
	Assume an arbitrary message signal spectrum. Here ω_s is the		
	sampling frequency and ω_M is the maximum frequency present in		
11	Consider the signal $\mathbf{x}(t) = \cos 2000\pi t + 10 \sin 10000\pi t + 20 \cos t$	6	June 2023
11	$5000\pi t.$	0	June 2025
	Determine		
	1. Nyquist rate for this signal		
	2. If the sampling rate is 5000 samples per second, then what		
	is the discrete time signal x(nTs) obtained after sampling,		
	where T _s is the sampling period and n is an integer.		
12	Consider the continuous time band-limited signal $x(t)$ with a	8	June 2023
	spectrum $x(t)$ as shown in figure above. Sketch the spectrum of the discrete time single x_1 for x_2 for x_3 for x_4 the spectrum of the discrete time single x_4 for x_4 for x_4 for x_4 the spectrum of the discrete time single x_4 for		
	the discrete time signals $x_1[n]$ and $x_2[n]$ obtained from $x(t)$ by		
	sampling at 5 KHz and 5 KHz respectively.		
	¹ x(f)		
	-2 KHz 2KHz		
	MODULE 4		
1	Define Energy Spectral Density of a discrete time signal? How can you relate it to the DTFT of the signal?	3	June 2022
2	Determine the Fourier series coefficients of the signal	3	June 2022
	$x(n) = 2 + \cos\left(\frac{\pi}{3}n + \frac{\pi}{4}\right)$		
3	Find the DTFT of the following sequences using properties given	7	June 2022
	$x(n)$ has a DTFT $X(e^{i\omega})$		
	1. $x_1(n) = x(1-n)$		
	2. $x_1(n) = e^{j\frac{\pi}{4}n}x(n-2)$		
4	Consider an LTI system that is characterized by the difference	7	June 2022
	equation		

	$y(n) - \frac{3}{4}y(n-1) + \frac{1}{2}y(n-2) = x(n)$		
	Find the frequency response $H(e^{j\omega})$ and the impulse response		
	h(n) of the system.		
5		7	Law 2022
2	Find the DIFT of the given signal $x(n)$	/	June 2022
	$x[n] = \begin{cases} 1, n \le N_1 \\ 0, n > N \end{cases}$		
	$(0, n > N_1$		
6	State and prove the convolution property of DTFT.	7	June 2022
7	Define Discrete-Time Fourier Transform (DTFT) of a signal $[n]$.	3	June 2023
	Prove that the DTFT is periodic with period 2π .		
8	Determine Discrete Time Fourier Series of function	3	June 2023
	$x[n] = 3\cos(\frac{n}{8}n)$		
9	Fourier series coefficients of a discrete time periodic signal x[n] is	6	June 2023
	given by $C_k = \cos \frac{k\pi}{4} + \sin \frac{3k\pi}{4}$. Period of x[n] is N=8. Determine		
	the sequence $x[n]$.		
10	Determine and sketch the magnitude and phase spectra of the	8	June 2023
	following periodic signal $x[n] = \cos \frac{2\pi}{n} n + \sin \frac{2\pi}{n} n$		
11	Determine the DTFT of the signal $[n]$ as give below.	9	June 2023
	$(3, -10 \le n < 0)$		
	$x = [n] = \{-3, 0 \le n \le 10\}$		
	(0, elsewhere		
	Obtain the final expression of DIFT in terms of trigonometric functions. Find the magnitude and phase spectra of $[n]$		
12	Using DTFT determine the impulse response of the discrete time	5	June 2023
12	system described by the difference equation	5	June 2023
	y[n-2]=x[n-1]+3y[n-1]-2y[n]		
	MODULE 5		1
1	If the ROC of system function of an LTI system is $ z > 0.8$,	3	June 2022
	comment on the stability and causality of the system with		
2	Give the relation between DTET and z transform of a discrete	3	June 2022
2	time signal	5	June 2022
3	Determine the z-transform for the following signal. Sketch the	7	June 2022
	pole-zero plot and indicate the ROC.		
	$x(n) = {\binom{1}{2}}^{n-1} u(n+3) 77$		
4	For the I TI system with system function $H(z)$ find the impulse	7	June 2022
-	response so that the system is stable	7	June 2022
	$5 10 z^{-1}$		
	$H(z) = \frac{3 - 10z}{1 - 2 \sqrt{z^2 - 1} + 1 \sqrt{z^2 - 2}}$		
	$1 = 3.52^{-1} + 1.52^{-1}$		
5	Call this system be both stable and causal?	10	June 2022
	$2\tau^2 + 16$	10	June 2022
	$X(z) = \frac{2z^2 + 10}{(z+1)(z-2)}$		
	for all possible ROCs		
6	Write down any four properties of ROC for Z transform.	4	June 2022

7	Find the Z transform of $x(n) = r^n \sin \omega_n u(n)$	3	June 2023
8	What is the final value of x(n), if $X(z) = \frac{z^2}{(z-1)(z-0.2)}$		June 2023
9	Obtain the transfer function and impulse response for a stable	8	June 2023
	and causal system with difference equation		
	$y[n] + \frac{1}{6}y[n-1] - \frac{1}{6}y[n-2] = 3x[n] - \frac{1}{6}x[n-1]$		
10	Determine the impulse response of the system described by the	3	June 2023
	difference		
	equation $y(n) = ay(n-1) + x(n)$		
11	Determine the Z transform and plot the ROC of the function given	6	June 2023
	by $x(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(n)$		
12	A certain LTI system is described by the following system	4	June 2023
	function (z) = $\frac{(z+1/2)}{(z-1)(z-1/2)}$. Find the system response to the input		
	$x(n) = 4^{-(n+2)}u(n)$		
13	Determine the transfer function of the system given by the	10	June 2023
	difference equation $y(n) + \frac{1}{4}y(n-1) = x(n) - x(n-1)$.		
	Calculate the frequency response from its transfer function.		
	Express the same in terms of trigonometric functions. Also obtain		
	the magnitude and phase responses of the given system		

ECT 206 COMPUTER ARCHITECTURE AND MICROCONTROLLERS

	MODULE 1				
Sl.No.	Questions	Marks	KTU, Year		
1	Show the binary representation of (-54.035)10 in Single precision floating point format	3	KTU JUNE 2023		
	Write down the range of numbers that can be represented using IEEE 754 single precision floating point representation. How do we represent zero, infinity and 49 in IEEE 754 format.	8	KTU JULY 2021		
2	What are the functional units of a Computer?	3	KTU JUNE 2023		
3	a)Explain "shift and add" algorithm for multiplying two numbers with an example	8	KTU JUNE 2023		
	b) Differentiate RISC and CISC Computer Architecture	6			
4	a)Draw and explain the general internal architecture of a processor	8	KTU JUNE 2023		
	b) Explain processor operations Instruction fetch, decode and execute.	6			
5	Differentiate between Von-Neumann and Harvard Architecture.	3	KTU JUNE 2022		
6	Define Address bus, Data bus and Control bus.	3	KTU JUNE 2022		
7	Explain Non-restoring division algorithm with an example.	8	KTU JUNE 2022		
8	Explain Instruction Cycle with a sample timing diagram.	6	KTU JUNE 2022		
		10	MODEL		
9	Illustrate the algorithm for division of two 4 bit signed binary numbers, -6/4. Write the algorithm or draw the flowchart also.	8	KTU JULY 2021		
10	How does a computer go from a set of stored instructions to running them?	7	KTU JUNE 2022		
	MODULE-2				
1	Explain the memory organization of 8051 microcontroller.	3	KTU JUNE 2023		

2	Write down the function of following instructions	3	KTU JUNE 2023 KTU JUNE 2022
	(a) ARE A, $@$ R1 (b) CER A (c) ACH A, $@$ R0 (b) ANL A, $@$ R1 (b) RLC A (c) MOVX A, $@$ R0	3	
3	a) Explain different Addressing Modes of 8051 Microcontroller with examples.	8	KTU JUNE 2023
	b) Explain Read/Write operation of any one port of 8051 microcontroller using port diagram.	6	
4	a) Explain the interrupts of 8051 microcontroller	5	KTU JUNE 2023
	b) Draw and explain the architecture of 8051 microcontroller.	9	
5	Draw and explain the PSW of 8051 microcontroller.	3	KTU JUNE 2022
6	Explain TCON and TMOD special function register in 8051 Microcontroller	6	KTU JUNE 2022
7	List the components of 8051 microcontroller	3	KTU JULY 2021 MODEL
8	Write the operations happening in the following instructions:	3	KTU JULY 2021
	ADD A, 56		MODEL
	XCHD A,		
	@R1 DJNZ		
	R6, LABEL		
	DIV AB		
	XRL A, #0FFh		
	JB P1.2 LABEL		
9	Explain the RAM memory organization of 8051 microcontroller using a schematic diagram. Also list the 8051 Special function registers and its functions.	9	KTU JULY 2021
10	What is stack? Explain the role of stack in program execution during a CALL instruction	5	KTU JULY 2021
	MODULE -3		
1	Write an assembly language program to copy a block of 8 bytes of data to RAM locations starting at 80H from RAM locations 20H.	3	KTU JUNE 2023
2	What are the types of constants in embedded C?	3	KTU JUNE 2023

2		0	KTU IUNE 2023
3	a)Explain the interfacing of stepper motor with the microcontroller. Write an assembly language program to rotate stepper motor in a clockwise direction continuously in full-step mode.	9	
	b) Write an 8051 assembly language program to find the sum of 25 data bytes stored in array of external RAM starting with address 3200H. Store the 16 bit sum at the end of array.	5	
4	 a) Explain interfacing of DAC with 8051 using a diagram and also write an embedded C program to generate staircase waveform. b) Write an assembly language program to interface a 7 Segment LED display with 8051 microcontroller. 	7	KTU JUNE 2023
5	What is constant in embedded C?	3	KTU JUNE 2022
6	Write an ALP to find the largest number in an array of 10 bytes, stored in the internal memory block starting with 21H. Store the result at 50H.	6	KTU JUNE 2022
7	Draw the block diagram to show how 8051 is connected to DAC 0808 at port P1.Write a program to generate Ramp signal.	8	KTU JUNE 2022
8	Write an 8051 C program to get a byte of data from Port P1. If it is less than 100, send it to P0; otherwise, send it to P2	6	KTU JUNE 2022
9	Write an 8051 C program to send values 00-FF to port P1.	3	KTU JULY 2021
10	Write an 8051 C program to send letters 'M', 'D' to LCD using delays.	7	KTU JULY 2021
	MODULE -4		
1	Explain how the baud rate is configured in 8051 serial port	3	KTU JUNE 2023
2	Explain assembler, interpreter and compiler.	3	KTU JUNE 2023
3	a) Explain 8051 timer mode 1 and mode 2 characteristics and operations using diagrams.	8	KTU JUNE 2023
	b) Write an 8051 C program to transfer the message "FOLLOW THIS" serially at baud rate of 9600, 8bit data with 1 stop bit continuously.	6	
4	a)Write an 8051 assembly language program to generate a square wave of 1KHz frequency at pin P0.1 using Timer 0. Explain how timer modes are selected using TMOD register.	8	KTU JUNE 2023
	OR Write an ALP to generate a square wave of frequency 100KHz on	7	KTU JUNE 2022

	pin P1.0, using Timer 1 operating in mode 0. Assume Crystal		KTU JUNE 2023
	irequency 11.0592 Minz	6	KTU JUNE 2022
	b) Draw and explain ARM7 register architecture.		
5	What is the difference between a Timer and Counter?	3	KTU JUNE 2022
6	Explain the format of SCON Special Function Register.	3	KTU JUNE 2022
7	Explain various System software.	8	KTU JUNE 2022
8	Write an embedded C program for the 8051 to transfer letter "A" serially at 9600 baud, continuously. OR	6	KTU JUNE 2022
	Explain the steps to transfer data serially in 8051. Write an 8051 assembly language program to transfer 'Y' serially at baud rate 9600 continuously through Port 0	8	KTU JULY 2021
	Assume a switch is connected to pin PL7. Write a embedded C program for 8051 microcontroller to monitor its status and send two messages to serial port continuously as follows: SW=0 send "NO" SW=1 send "YES" Assume XTAL = 11.0592 MHz, 9600 baud, 8-bit data, and 1 stop bit	10	MODEL
	OR Write a embedded C program for 8051 microcontroller to send the message "Hello World !" to serial port. Assume a SW is connected to pin P1.2. Monitor its status and set the baud rate as follows: $SW = 0$, 4800 baud rate $SW = 1$, 9600 baud rate Assume XTAL = 11.0592 Mhz, 8 – bit data, and 1 stop bit	10	MODEL
9	Assume XTAL=11.0592. Compute the value to be loaded into TH0 andTL0 (mode 1) to incorporate a time delay of 5ms	3	KTU JULY 2021
10	Explain the procedure of doubling the baud rate of data transfer in 8051 serial communication.	3	KTU JULY 2021
	MODULE -5		•
1	Write a short note on memory hierarchy	3	KTU JUNE 2023 KTU JUNE 2022
2	Explain the replacement algorithm used in cache memory.	3	KTU JUNE 2023

			1 1
3	a) Explain programmed I/O and interrupt driven I/O.	8	KTU JUNE 2023
	b) What is the role of TLB (Translation Look aside Buffer) in		KTU JULY 2021
	virtual address to physical address translation?	6	
4	a) Explain about DMA data transfer methods.	4	KTU JUNE 2023
	b) Explain set associative mapping technique used in cache memory. How it is different from direct mapping.	10	
5	Define Virtual memory.	3	KTU JUNE 2022
6	Why does dynamic RAM need constant refreshing? How is this done?	3	KTU JUNE 2022
7	Explain different mapping techniques in cache memory.	8	KTU JUNE 2022
8	Explain the Asynchronous input/output transfer with proper timing diagram.	6	KTU JUNE 2022
9	Explain the address translation mechanism in Virtual Memory.	8	KTU JUNE 2022
10	Explain the working of DRAM and SRAM with neat diagram.	6	KTU JUNE 2022

MCN 202 CONSTITUTION OF INDIA

Module 1			
Sl No	Questions	Marks	KTU,Year
1	Explain the salient features of Indian Constitution	3	July 2021 (FN)
2	What do you mean by federal system of government? Give an example	3	July 2021 (FN)
3 a	What is preamble? Explain the importance of preamble in the implementation of Constitution	6	July 2021 (FN)
b	Explain different ways for acquiring Indian citizenship.	8	July 2021 (FN)
4a	Explain the salient features of Indian constitution.	8	July 2021 (FN)
b	Write notes on methods of termination of Indian citizenship.	6	July 2021 (FN)
5	Define Constitution. Why is it necessary for a Country	3	July 2021 (AN)
6	Explain the need and importance of Preamble	3	July 2021 (AN)
7 a	What is Preamble? Can it be used for the interpretation of the constitution? Also explain its significance	8	July 2021 (AN)
b	Describe the salient features of Indian Constitution	6	July 2021 (AN)
8 a	Give detail account on the historical background of Indian Constitution	б	July 2021 (AN)
b	What is citizenship? Discuss the various methods of acquiring Indian citizenship	8	July 2021 (AN)
9 a	List out the salient features of Indian Constitution	7	June 2023
b	Discuss the various aspects in the preamble of Indian Constitution	7	June 2023
10 a	Discuss the various methods to acquire Indian citizenship	8	June 2023
b	Explain any three citizenship amendment act	6	June 2023

Module 2			
Sl No	Questions	Marks	KTU,Year
1	Explain the concept of "Equality before Law"	3	July 2021 (FN)
2	"No person shall be prosecuted and punished for the same offence more than once". Discuss this clause	3	July 2021 (FN)
3 a	Explain the concept of appeal by special leave	6	July 2021 (FN)
b	Discuss the classification of Directive Principles of State Policy in detail	8	July 2021 (FN)
4 a	What do you mean by right against exploitation? Explain	7	July 2021 (FN)
b	Distinguish between fundamental rights and directive principles of state policy	7	July 2021 (FN)
5	How is State defined under Article 12 of Indian Constitution	3	July 2021 (AN)
6	What is the basic difference between Fundamental Rights and Directive Principles of State Policy?	3	July 2021 (AN)
7 a	Describe the Rights to Constitutional Remedies and explain its significance	6	July 2021 (AN)
b	Explain the needs and importance of fundamental duties of Indian Citizen	8	July 2021 (AN)
8 a	What are Fundamental Rights? Examine each of them	8	July 2021 (AN)
b	State the Directive Principles of State Policy and explain its significance	6	July 2021 (AN)
9 a	What are the features of fundamental rights? Explain any two types of fundamental right.	9	June 2023
9 b	List out the Gandhian ideology included in directive principle	5	June 2023
10 a	What are the duties of Indian Citizens according to Constitution?	8	June 2023
10 b	List out the features of directive principles of state	6	June 2023

Module 3				
Sl No	Questions	Marks	KTU,Year	
1	Explain the procedure for impeachment of the President of India.	3	July 2021 (FN)	
2	Explain the role of the Attorney General for India	3	July 2021 (FN)	
3 a	Explain the powers of President of India.	8	July 2021 (FN)	
b	Explain the constitutional position and essential qualifications of Vice-president of India.	6	July 2021 (FN)	
4 a	Explain the qualification and disqualification for membership in the house of the people.	8	July 2021 (FN)	
b	Explain various kinds of jurisdiction of Supreme Court	6	July 2021 (FN)	
5	Explain the procedure for impeachment of the President of India.	3	July 2021 (AN)	
6	Mention the Powers and Functions of the Attorney General for India	3	July 2021 (AN)	
7 a	Explain various kinds of jurisdiction of Supreme Court of India	7	July 2021 (AN)	
b	Explain the constitutional duties and powers of the Prime Minister	7	July 2021 (AN)	
8 a	Explain the functions and powers of the President of India.	8	July 2021 (AN)	
b	Explain in detail about the Union Government structure and functions	6	July 2021 (AN)	
9.a	Describe the procedure for election and removal of the president of India	8	June 2023	
9.b	Explain any three functions of Parliament	6	June 2023	
10.a	Explain the powers and functions of the Prime Minister	9	June 2023	
10.b	Supreme Court may in its discretion to grant to special leave to appeal. Examine the situation	5	June 2023	

Module 4			
Sl No	Questions	Marks	KTU,Year
1	Explain the procedure for the appointment of chief minister	3	July 2021 (FN)
2	Explain the duties of advocate general of the state.	3	July 2021 (FN)
3 a	Explain the powers and functions of the Governor of Kerala state.	6	July 2021 (FN)
b	Explain the composition and duration of state legislative council	8	July 2021 (FN)
4 a	Explain the qualification and disqualification for membership of the state legislature	7	July 2021 (FN)
b	Explain the constitution of High court. What are the essential qualifications required for the appointment of High court Judge?	7	July 2021 (FN)
5	What are the constitutional provisions relating to freedom of trade ,commerce and intercourse	3	July 2021 (AN)
6	List out the three types of emergencies under Indian constitution	3	July 2021 (AN)
7 a	Describe the duties and role of Comptroller and Auditor General of Indian (CAG)	8	July 2021 (AN)
b	Examine the administrative and financial relation between the Union and the State	6	July 2021 (AN)
8 a	Enumerate the powers and functions of Public Service Commission	8	July 2021 (AN)
b	Explain the characteristics of Administrative Tribunals. What are the reasons for the growth of Administrative Tribunals in India	6	July 2021 (AN)
9.a	Discuss the qualification and disqualification of the membership of state legislature	10	June 2023
9.b	What are the duties and functions of Advocate general of the state	4	June 2023
10.a	List out the different jurisdiction and powers enjoyed by the High Court and explain original and writ jurisdiction in detail	10	June 2023
10.b	What are the powers enjoyed by the Governor	4	June 2023

Module 5				
Sl No	Questions	Marks	KTU,Year	
1	Discuss the functions of comptroller and auditor general of India	3	July 2021 (FN)	
2	Explain the distribution of tax revenue with respect to centre-state financial relation.	3	July 2021 (FN)	
3 a	Explain parliamentary legislation in the state field	6	July 2021 (FN)	
b	Discuss the effects of national and financial emergencies	8	July 2021 (FN)	
4 a	Explain the procedure for amendment of the constitution	6	July 2021 (FN)	
b	What is the need for administrative tribunals? Explain the functions of state administrative tribunals	8	July 2021 (FN)	
5	Why do we need to form separate Union Territories	3	July 2021 (AN)	
6	Distinguish between an 'Ordinary Bill' and 'Money Bill'	3	July 2021 (AN)	
7 a	Explain the various writs issued by High court of Kerala	6	July 2021 (AN)	
b	Discuss the constitutional position and powers of Governor	8	July 2021 (AN)	
8 a	Explain the functions of the State Legislature	8	July 2021 (AN)	
b	Explain the responsibilities and functions of Council of Ministers to State Legislative Assembly	6	July 2021 (AN)	
9.a	What are the five extraordinary circumstances on which the Constitution empowers the Parliament to make laws on any matter enumerated in the State list?	10	June 2023	
9.b	Briefly explain the grants $-$ in $-$ aid the state	4	June 2023	
10.a	Explain three types of emergencies under Indian Constitution	10	June 2023	
10.b	What are the functions of interstate council	4	June 2023	

EST 200 DESIGN AND ENGINEERING

MODULE I			
Sl.No.	Questions	Marks	KTU, Year
1	Outline the significance of understanding customer requirements in the design process	3	KTU JUL 2021
2	Explain the design process of designing a handbag for women in the age group of 15 to 25 years. Use hand sketches to support your idea	14	KTU JUL 2021
3	Describe the concept of generating design alternatives and choosing a design through designing a coffee mug with the help of sketches	14	KTU JUL 2021
4	Discuss the importance of design constraints?	3	KTU DEC 2020
5	Describe how to select the "best possible design" from the generated design alternatives.	3	KTU DEC 2020
6	Design two alternatives of a chair suitable for a five-year-old child, and then narrow down to the best design based on objectives and constraints. Sketch both the designs.	14	KTU DEC 2020
7	Identify the objectives, functions, and constraints for designing a water level indicator. Illustrate the various stages of the design process. Provide suitable sketches.	14	KTU DEC 2020
8	Give the main objectives and constraints for the design a)Main entrance door of a house b)The door of a room within the house c)The door to a bathroom within the house d)Lunch box	5	KTU MAY 2019
9	What is engineering design? Draw a diagram to represent the engineering design process?	3	KTU JUNE 2022
10	How will a prototype help to identify the best possible solution	3	KTU JUNE 2022
	for the problem?		
11	Design	14	KTU MAY 2019
	 (b) length-adjustable mop to clean the ceiling fan (c) study table for a child upto 5 years old specifying objectives, functions and constraints through various stages of design processes. Use hand sketches to illustrate the 		KTU JUNE 2022 KTU JUNE 2023
	process.		

12	An electric car recharging station has to be designed. Find the	14	KTU JUNE 2022
	customer requirements and explain how it can be		
	materialized. Include the detailed layout		
	of the station?		
13	How is engineering design different from other kinds of design?	3	KTU JUNE 2023
14	Choose the best design for a laptop stand for avoiding overheating,	14	KTU JUNE 2023
	also incorporate the customer requirements. Show how design		
	objectives were finalized considering the constraints also.		
	MODULE II		
1	Explain convergent questioning in design thinking	3	KTU JUL 2021
2	Explain how the conflict in a team environment helps in better design of products	3	KTU JUL 2021
3	Illustrate the design thinking process through designing a	14	KTU JUL 2021
	(a) walking stick for elderly people		
	(b) a parachute mechanism for the safe landing of an egg that is dropped from a height of 3 meters		KTU JUL 2021
	(c) a water bottle that can be opened with one hand		KTU DEC 2020
	with help of sketches.		
4	Discuss how to manage the conflicts in a team executing the	3	KTU DEC 2020
	design thinking process.		
5	How does the design thinking approach help engineers in	3	KTU DEC 2020
	creating innovative and efficient designs?		
6	During the Carriel 10 and and a new platter to see the	1 /	
6	During the Covid-19 pandemic, people have to wear a mask, but wearing a mask is not comfortable. Empathize about this	14	KTU DEC 2020
	design problem and arrive at a solution using the design		
	thinking process, so that people can select the level of		
	protection provided by masks according to different situations. Illustrate the solution using sketches		
7	Design a manual mango plucker (with a height adjusting	10	∝ КТН ЦН V 2018
	mechanism that can be used by a common man to pluck and		KIUJULI 2018
	collect safely the mangoes from the mango tree in his yard.		
	• Prepare a detailed design highlighting the benefits		
	 Draw a neatly labeled sketch showing your design 		
8	Explain and differentiate conceptual design and detailed	3	KTU JUNE 2022
	design?		
9	Explain the five different stages of design thinking?	14	KTU JUNE 2022
-	Illustrate it with the help of		
	a face mask design		

10	Explain the term design functions as applicable to engineering design.	3	KTU JUNE 2023
11	How does design thinking approach help engineers in creating innovative and efficient designs?	3	KTU JUNE 2023
12	Construct a number of possible designs and then refine them to narrow down to the best design for a baby seater in a car. Show how convergent-divergent thinking helps in the process. Illustrate with hand sketches.	14	KTU JUNE 2023
13	Design a carry bag for shopping purposes. Illustrate the various stages involved in design thinking. Sketch the final design.	14	KTU JUNE 2023
	MODULE III		
1	Describe how prototyping helps in the design process	3	KTU JUL 2021
2	Explain any three advantages of communicating designs in writing.	3	KTU JUL 2021
3	Design an office chair and communicate your design using sketches with design detailing, material selection, scale drawings, and dimensions	14	KTU JUL 2021
4	Describe the role of mathematical modeling in design engineering citing an example	14	KTU JUL 2021 KTU JUL 2023
5	Clarify the part of mathematics and physics in the design engineering process.	3	KTU DEC 2020
6	 What are factors to be considered in (a) Preparing technicalreports to communicate a design efficiently? (b) Communicating designs through and presentation? 	3	KTU DEC 2020
7	(b) Communicating designs through oral presentation?	3	KTU JUL 2023
,	 (a) foldable steel table (b) a foldable bed Draw the detailed 2D drawings of the same with design detailing, scale drawings, and dimensions. Use only hand sketches. 	14	KTU JUL 2023
8	Prepare a technical report for a newly designed website for online training of students with neat diagrams for presenting to a client.	14	KTU DEC 2020
9	Show how engineering sketches and drawings convey designs.	4	MODEL

10	Explain the role of mathematics and physics in design engineering process.	3	MODEL
11	Graphically communicate the design of a thermos flask used to keep hot coffee. Draw the detailed 2D drawings of the same with design detailing, material selection, scale drawings, dimensions, tolerances, etc. Use only hand sketches.	14	MODEL
12	Describe the role of mathematical modeling in design engineering. Show how mathematics and physics play a role in designing a lifting mechanism to raise 100 kg of weight to a floor at a height of 10 meters on a construction site	14	MODEL
13	Explain the steps for oral presentation for marketing your own product within limited budget? Illustrate with an example and suitable figures.	14	KTU JUL 2023
14	A web page has to be maintained to store the details of covid patients in Kerala district wise. Design a web page and its popups with neat sketches and necessary documentation. The design must include the specification of softwares required for the page development.	14	KTU JUNE 2022
15	A round glass of 600 mm diameter and 6mm thick is available. This is to be designed as a table supported at three points by a steel tube bent conveniently. The height of the table is to be 300 mm and the total length of the tube used should not exceed 1.8 m, The tube should not be out or joined. Design the bent tube for supporting the table	10	KTU SEP 2020
	Support Points Glass Sheet		

	MODULE IV		
1	Illustrate advantages of reverse engineering in design	3	KTU JUL 2021
2	Explain biomimicry in design with an example	3	KTU DEC 2020
	How does intelligence in nature inspire engineering designs?	3	KTU JUL 2023
3	a) What is meant by modular design?	5	KTU MAY 2019
	b) How modular design is realized in i) Umbrella and ii) Ink Pen iii) bicycle iv) desktop Computers? Draw the different modules involved in each of theseproducts.	14	KTU MAY 2019
4	Demonstrate the concept of ergonomics through the design of a table lamp	14	KTU JUL 2021
5	a) Describe the use of value engineering in the design	3	KTU DEC 2020
	b) Apply value engineering and design. Illustrate the solution using sketches	14	KTU DEC 2020
	(a) Pen (b)bag for the students residing in poor homes		KTU JUL 2018
	(c)lightweightpen(d) product for easy cleaning of dust from windows, fans, and lampshades.		KTU JUN 2017
6	Design waste bins to be kept at bus stops for waste collection	14	KTU DEC 2020
	enabling source separation. The bin should be theft-resistant and protect the contents of the bin from external weather conditions. Design the bins with ergonomic consideration for waste collection workers. Sketch the design using hand drawings.		
7	Show the development of a nature-inspired design for a solar-powered bus waiting shed beside a highway. Relate between natural and man-made designs. Use hand sketches	14	MODEL
8	Show the design and then depict how the design changes when considering 1) aesthetics and 2) ergonomics into consideration. Give hand sketches and explanations to justify the changes in designs. (a) A sofa	14	MODEL
	(b) Kid friendly craft		KTU JUL 2023

9	Distinguish between project-based learning and problem-	3	MODEL
	based on learning in design engineering.		
10	Describe how concepts like value engineering, concurrent	3	MODEL
	Engineering, and reverse engineering influence engineering		
	designs?		
11	Draw the figure of a smartphone which is both aesthetic	5	KTU JUN 2017
	and ergonomic		
12	A class room has to be designed in such a way that it should	14	KTU JUNE 2022
	support the faculty for taking both online and offline mode		
	class in the same room. Prepare a bill of material and draw a		
	neat sketch showing the seating arrangement, cable layout,		
	projector and smart board position, podium, camera and		
	the teacher position. Aesthetic, ergonomics and convenience		
	mustbe considered.		
13	(a) Write the significance of life cycle design?	4	KTU JUNE 2022
	(b) Apply the ergonomic design concepts to design a knife	10	
	for various purposes. Illustrate each design with a neat		
	sketch?		
14	Design a smart umbrella which has automatically folding	14	KTU JUL 2023
	and unfolding mechanism during heavy rain and sunlight		
	with the concept of bio mimicry and sustainability. Use hand		
	sketches to support your arguments.		
15	Examine how engineering students can learn design	3	KTU JUL 2023
	engineering through projects.		

	MODULE V		
1	Describe ethics to be followed in engineering design	3	KTU JUL 2021
	How do ethics play a decisive role in engineering design?	3	KTU DEC 2020
2	(a) Explain the significance of sustainability in	3	KTU JUL 2021
	(b)Illustrate the changes in the design of disposable tea cups in terms of production, use, and sustainability	1 4	KTU JUL 2021
3	Describe how to estimate the cost of a table in the design stage? Show how economics will influence engineering designs. Or	1 4	KTU JUL 2021
	Describe how to estimate the cost of a pen and list the various parts. Show how economics will influence engineering designs. Use hand sketches to support your arguments.		KTU DEC 2020
	Describe the how to estimate the cost of a particular design using ANY of the following: i) a website, ii) the layout of a plant, iii) the elevation of a building, iv) an electrical or electronic system or device and v) a car. Show how economics will influence engineering designs. Use hand sketches to support your arguments.		MODEL
	OR A table has to be designed as a study table, but it must include a provision to place your computer. Calculate the cost difference if you want to convert it as a dining table. The cost calculation must include labor, material and overhead costs	14	KTU JUNE 2022
4	Design a fan that automatically reduces speed or stops when the temperature reduces during the night for energy conservation. Use hand sketches to support your design.	1 4	KTU DEC 2020
5	 Examine the changes in the design of footwear with constraints of 1) production methods, 2) life span requirement, 3) reliability issues and 4) environmental factors. Use hand sketches and give proper rationalization for the changes in design. 	1 4	MODEL
6	Show how designs are varied based on the aspects of production methods, life span, reliability, and environment?	3	MODEL
7	Show how designs are finalized based on the aspects of production methods.	3	

8	Examine the changes in the design of a hand purse with constraints of 1) production methods 2) life span requirement 3) reliability issues and 4) environmental factors. Use hand sketches and give proper rationalization for the change in design	14	KTU JUL 2023
9	Describe how to estimate the cost of a particular design of a smart bus for public use with wifi and proper cleaning facility. List the various components used. Show how economics will influence the engineering designs, use hand sketches to support the arguments.	14	KTU JUL2023